Have a personal or library account? Click to login
Constructive Approach of the Solution of Riemann Problem for Shallow Water Equations with Topography and Vegetation Cover

Constructive Approach of the Solution of Riemann Problem for Shallow Water Equations with Topography and Vegetation

Open Access
|Sep 2020

References

  1. [1] Luca Cozzolino and Veronica Pepe and Luigi Cimorelli and Andrea D’Aniello and Renata Della Morte and Domenico Pianese, The solution of the dam-break problem in the Porous Shallow water Equations, Advances in Water Resources, 114(2018), 83–101.10.1016/j.advwatres.2018.01.026
  2. [2] Luca Cozzolino and Luigi Cimorelli and Carmine Covelli and Renata Della Morte and Domenico Pianese, The analytic solution of the Shallow-Water Equations with partially open sluice-gates: The dam-break problem, Advances in Water Resources, 80(2015), 90–102.10.1016/j.advwatres.2015.03.010
  3. [3] G. Dal Maso, P.G. LeFloch, F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74(1995), 483–548.
  4. [4] O. Delestre, C. Lucas, P.A. Ksinant, F. Darboux, C. Laguerre, et al. SWASHES: a compilation of Shallow Water AnalyticSolutions for Hydraulic and Environmental Studies, International Journal for Numerical Methods in Fluids, 72(3)(2013), 269–300.10.1002/fld.3741
  5. [5] Thierry Gallouet, Jean-Marc Herard, Nicolas Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography, Computers&Fluids, 32(2003) 479–513.10.1016/S0045-7930(02)00011-7
  6. [6] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Commun. Pure. Appl. Math. 18(1965), 697–715.10.1002/cpa.3160180408
  7. [7] Vincent Guinot, A critical assessment of flux and source term closures in shallow water models with porosity for urban flood simulations, Advances in Water Resources, 109(2017), 133–15710.1016/j.advwatres.2017.09.002
  8. [8] S. Ion, D Marinescu and S G Cruceanu, Riemann Problem for Shallow Water Equation with Vegetation An. St. Univ. Ovidius, 26(2)(2018), 145–173.10.2478/auom-2018-0023
  9. [9] S. Ion, D. Marinescu, A. V. Ion, S. G. Cruceanu, V. Iordache Water ow on vegetated hill. 1D shallow water equation type model, An. St. Univ. Ovidius, 23(3)(2015), 83–96.10.1515/auom-2015-0049
  10. [10] P.D. Lax, Hyperbolic systems of conservation laws. II., Commun. Pure Appl. Math. 10(1957), 537–566.10.1002/cpa.3160100406
  11. [11] P.G. LeFloch, Mai Duc Thanh, Rieamann problem for the shallow water equations with discountinous topography,, Commun. Pure Appl. Math. 5(4)(2007), 865–885.10.4310/CMS.2007.v5.n4.a7
  12. [12] P.G. LeFloch, Hyperbolic systems of conservation laws: the theory of classical and nonclassical shock waves, Lectures in Mathematics, ETH Zuerich, Birkhauser, 2002.
  13. [13] P.G. LeFloch, Graph solutions of nonlinear hyperbolic systemsJ. Hyper. Diff. Equa. 1(2004), 243–289.
  14. [14] P.G. LeFloch, A.E. Tzavaras, Representation of weak limits and definition of nonconservative products, SIAM J. Math. Anal., 30(6)(1999), 1309-1342.10.1137/S0036141098341794
  15. [15] H. M. Nepf, Drag, turbulence, and di usion in flow through emergent vegetation, Water Resources Research, 35(2)(1999), 479–489.10.1029/1998WR900069
  16. [16] J.A. Smoller, Shock Waves and Reaction-Diffusion Equations, (Second Edition). New York: Springer, 1994.10.1007/978-1-4612-0873-0
  17. [17] E.F. Toro, Riemann solvers and numerical methods for fluid dynamics, Berlin: Springer, 1997.10.1007/978-3-662-03490-3
  18. [18] A.I. Volpert, The spaces BV and quasilinear equations, Math. USSR Sbornik, 73(1967), 255–302.
DOI: https://doi.org/10.2478/auom-2020-0021 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 93 - 114
Submitted on: Jul 10, 2019
Accepted on: Dec 16, 2019
Published on: Sep 22, 2020
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Stelian Ion, Stefan-Gicu Cruceanu, Dorin Marinescu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.