Have a personal or library account? Click to login
A generalization of Kruskal–Katona’s theorem Cover

References

  1. [1] L. Amata, M. Crupi, ExteriorIdeals: A package for computing monomial ideals in an exterior algebra, Journal of Software for Algebra and Geometry 8(1) (2018), 71–79.10.2140/jsag.2018.8.71
  2. [2] L. Amata, M. Crupi, Bounds for the Betti numbers of graded modules with given Hilbert function in an exterior algebra via lexicographic modules, Bull. Math. Soc. Sci. Math. Roumanie, Tome 61(109) No. 3, 237–253, 2018.
  3. [3] L. Amata, M. Crupi, Hilbert functions of graded modules over exterior algebras: an algorithmic approach, Int. Electron. J. Algebra, Vol. 27, 271–287, 2020.10.24330/ieja.663094
  4. [4] A. Aramova, J. Herzog, T. Hibi, Gotzman Theorems for Exterior algebra and combinatorics, J. Algebra 191 (1997), 174–211.10.1006/jabr.1996.6903
  5. [5] A. Aramova, J. Herzog, Almost regular sequence and Betti numbers, Amer.J. Math 122 (2000), 689–719.10.1353/ajm.2000.0025
  6. [6] W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, Vol. 39, 1998.10.1017/CBO9780511608681
  7. [7] D. Eisenbud, Commutative Algebra with a view toward Algebraic Geometry, Vol. 150, Graduate texts in Mathematics, Springer–Verlag, 1995.10.1007/978-1-4612-5350-1
  8. [8] M. Crupi, C. Ferrò, Bounding Betti numbers of monomial ideals in the exterior algebra, Pure and Appl. Math. Q., 11(2) (2015) 267–281.10.4310/PAMQ.2015.v11.n2.a4
  9. [9] M. Crupi, C. Ferrò, Squarefree monomial modules and extremal Betti numbers, Algebra Coll. 23 (3) (2016), 519–530.10.1142/S100538671600050X
  10. [10] W. Decker, G. M. Greuel, G. Pfister, H. Schönemann: Singular 4-1-0 — A computer algebra system for polynomial computations, available at http://www.singular.uni-kl.de (2016).
  11. [11] V. Gasharov, Extremal properties of Hilbert functions, Illinois J.Math. 41(4) (1997), 612–629.10.1215/ijm/1256068984
  12. [12] D.R. Grayson, M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2.
  13. [13] M. Crupi, G. Restuccia, Monomial modules and graded Betti numbers, Math. Notes 85 (2009), 690–702.10.1134/S0001434609050095
  14. [14] J. Herzog, T. Hibi, Monomial ideals, Graduate texts in Mathematics, Vol. 260, Springer–Verlag, 2011.10.1007/978-0-85729-106-6
  15. [15] A.H. Hoefel, Hilbert functions in monomial algebras, Doctoral Thesis, Dalhousie University, 2011.
  16. [16] H. Hulett: Maximum Betti numbers for a given Hilbert function, Comm. Algebra 21 (1993), 2335–2350.10.1080/00927879308824680
  17. [17] H. Hulett, A generalization of Macaulay’s Theorem, Comm. Algebra 23 (1995), 1249–1263.10.1080/00927879508825278
  18. [18] G. Katona, A theorem for finite sets in “Theory of graphs”, P. Erdös and G. Katona, eds., Academic Press, New York (1968), 187–207.
  19. [19] J. Kruskal, The number of simplices in a complex, in “Mathematical optimization techniques” (R. Bellman, ed.), University of California Press, Berkeley (1963), 251–278.10.1525/9780520319875-014
  20. [20] F.S. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. Lond. Math. Soc. 26 (1927), 531–555.10.1112/plms/s2-26.1.531
  21. [21] R.P. Stanley, Cohen-Macaulay rings and constructible polytopes, Bull. Amer. Math. Soc., 8 (1975), 133–135.10.1090/S0002-9904-1975-13670-6
DOI: https://doi.org/10.2478/auom-2020-0018 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 35 - 51
Submitted on: Jul 10, 2019
Accepted on: Sep 24, 2019
Published on: Sep 22, 2020
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Luca Amata, Marilena Crupi, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.