Have a personal or library account? Click to login
On Constraint Manifolds of Lorentz Sphere Cover

References

  1. [1] J. S. Beggs, Kinematics, ISBN: 0891163557: Taylor & Francis p.1 (1983).
  2. [2] D. Berenson, S. S. Srinivasa, D. Ferguson and J. J. Ku ner, Manipulation Planning on Constraint Manifolds, in IEEE International Conference on Robotics and Automation (2009).10.1109/ROBOT.2009.5152399
  3. [3] A. Biewener, Animal Locomotion, Oxford University Press (2003).
  4. [4] R. Bordalba, L. Ros and J. M. Porta, Kinodynamic Planning on Constraint Manifolds, arXiv preprint arXiv: 1705.07637 (2017).10.1109/ICRA.2018.8460753
  5. [5] O. Durmaz, B. Aktaş and H. Gündoğan, The Derivative and Tangent Operators of a Motion in Lorentzian Space, International Journal of Geometric Methods in Modern Physics14 (2017).10.1142/S021988781750058X
  6. [6] O. Durmaz, B. Aktaş and H. Gündoğan, Structure Equations and Constraint Manifolds on Lorentz Plane, Mathematical Methods in Applied Sciences DOI: 10.1002/mma.5275 (2018) 1-16.10.1002/mma.5275
  7. [7] A.Ç. Gözütok, S. OzkaldıKarakuş and H. Gündoğan, Conics and Quadrics in Lorentz Space, Mathematical Sciences and Applications E-Notes6(1) (2018) 58-63.10.36753/mathenot.421759
  8. [8] H. Gündoğan and O. Keçilioğlu, Lorentzian Matrix Multiplication and the Motion on Lorentzian Plane, Glass. Mat.41 (2006) 329-334.10.3336/gm.41.2.15
  9. [9] R. C. Hibbeler, Kinematics and Kinetics of a Particle, Engineering Mechanics:Dynamics, Singapore Prentice Hall. (2009).
  10. [10] O. Keçilioglu, S. Ozkaldı and H. Gündoğan, Rotations and Screw Motion with Timelike Vector in 3-Dimensional Lorentzian Space, Adv. Appl. Cli ord Algebra. 22 (2012) 1081-1091.10.1007/s00006-011-0318-0
  11. [11] R. Lopez, Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space, Int. Electron. J. Geom.7 (2014), 44-107.10.36890/iejg.594497
  12. [12] J. M. McCharty, An Introduction to Theoretical Kinematics, The MIT Press, Cambridge, Massachusetts, London, England (1990).
  13. [13] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, Inc, New York (1983).
  14. [14] S. Ozkaldı and H. Gündoğan, Cayley Formula, Euler Parameters and Rotations in 3-Dimensional Lorentzian Space, Adv. Appl. Cli ord Algebra. 20 (2010) 367-377.10.1007/s00006-009-0148-5
  15. [15] R. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag, New York (1994).10.1007/978-1-4757-4013-4
  16. [16] J. M. Winter, Terminology and Foundations of Movement Science. In: Winter J.M., Crago P.E. (eds) Biomechanics and Neural Control of Posture and Movement, Springer, New York, (2000).
DOI: https://doi.org/10.2478/auom-2020-0017 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 15 - 34
Submitted on: Sep 18, 2019
Accepted on: Dec 15, 2019
Published on: Sep 22, 2020
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Buşra Aktaş, Olgun Durmaz, Hal˙t Gündoğan, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.