Have a personal or library account? Click to login
The commutative quotient structure of m-idempotent hyperrings Cover

References

  1. [1] H. Aghabozorgi, B. Davvaz, M. Jafarpour, Nilpotent groups derived from hypergroups, J. Algebra, 382 (2013) 177-184.
  2. [2] R. Ameri, E. Mohammadzadeh, Engel groups derived from hypergroups, European J. Combin., 44 (2015) 191-197.
  3. [3] R. Ameri, T. Nozari, A new characterization of fundamental relation on hyperrings, Int. J. Contemp. Math. Sci. 5 (15) (2010) 721-738.
  4. [4] S.M. Anvariyeh, B. Davvaz, Strongly transitive geometric spaces associated to hypermodules, J. Algebra, 322 (2009) 1340-1359.
  5. [5] S.M. Anvariyeh, S. Mirvakili, B. Davvaz, θ-relation on hypermodules and fundamental modules over commutative fundamental rings, Comm. Algebra, 36 (2) (2008) 622-631.10.1080/00927870701724078
  6. [6] A. Asokkumar, Derivations in hyperrings and prime hyperrings, Iran. J. Math. Sci. Inform., 8 (1) (2013) 1-13.
  7. [7] S.P. Borgatti, M.G. Everett, The class of all regular equivalences: algebraic structures and computation, Soc. Networks, 11(1989), 65-88.10.1016/0378-8733(89)90018-X
  8. [8] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore,1993.
  9. [9] I. Cristea, M. Stefanescu, C. Angeluta, About the fundamental relations defined on hypergroupoids associated with binary relations, European. J. Combin., 32 (1) (2011) 72-81.10.1016/j.ejc.2010.07.013
  10. [10] B. Davvaz, P. Ghiasvand, S. Mirvakili, Boolean rings obtained from hyperrings with η1,m*-relations, Iran. J. Sci. Technol. Trans. A Sci., In press.
  11. [11] B. Davvaz, V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, USA, 2007.
  12. [12] B. Davvaz and T. Vougiouklis, Commutative rings obtained from hyperrings (Hv-rings) with α*-relations, Comm. Algebra, 35 (11) (2007) 3307-3320.10.1080/00927870701410629
  13. [13] D. Freni, A new characterization of the derived hypergroup via strongly regular equivalences, Comm. Algebra, 30 (8) (2002) 3977-3989.10.1081/AGB-120005830
  14. [14] K. Hila and B. Davvaz, An introduction to the theory of algebraic multi-hyperring spaces, An. Şt. Univ. Ovidius Constanţa, 22 (3) (2014) 59-72.10.2478/auom-2014-0050
  15. [15] M. Jafarpour, H. Aghabozorgi, B. Davvaz, Solvable groups derived from hypergroups, J. Algebra Appl. 15, 1650067 (2016) (9 pages).10.1142/S0219498816500675
  16. [16] J. Jantosciak, Algebraic hyperstructures and applications, (Xanthi, 1990), 119-122, World Sci. Publ., Teaneck, NJ, 1991.
  17. [17] M. Koskas, Groupoids, demi-hypergroupes et hypergroupes, J. Math. Pures Appl., 49 (9) (1970) 155-192.
  18. [18] M. Krasner, A class of hyperrings and hyperfields, Int. J. Math. Math. Sci., 6 (2) (1983) 307-311.10.1155/S0161171283000265
  19. [19] M. Norouzi, I. Cristea, Fundamental relation on m-idempotent hyperrings, Open. Math., 15 (2017) 1558-1567.
  20. [20] M. Norouzi, I. Cristea, Transitivity of the ɛm-relation on (m-idempotent) hyperrings, Open. Math., 16 (2018) 1012-1021.
  21. [21] T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, Algebraic hyperstructures and applications (Xanthi, 1990), 203-211, World Sci. Publishing, Teaneck, NJ, 1991.10.1142/9789814539555
  22. [22] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press Inc., Palm Harbor, 1994.
DOI: https://doi.org/10.2478/auom-2020-0015 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 219 - 236
Submitted on: Apr 23, 2019
|
Accepted on: May 31, 2019
|
Published on: Apr 9, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Azam Adineh Zadeh, Morteza Norouzi, Irina Cristea, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.