References
- [1] B. Adamczewski, Y. Bugeaud, Mesures de transcendance et aspects quantitatifs de la méthode de Thue-Siegel-Roth-Schmidt, Proc. London Math. Soc.101 (2010), 1-26.10.1112/plms/pdp054
- [2] A. Baker, On Mahlerâs classification of transcendental numbers, Acta Math.111 (1964), 97-120.10.1007/BF02391010
- [3] Y. Bugeaud, Approximation by Algebraic Numbers, Cambridge Tracts in Mathematics, 160 (Cambridge University Press, Cambridge, 2004).10.1017/CBO9780511542886
- [4] Y. Bugeaud, G. Kekeç, On Mahlerâs classification of p-adic numbers, Bull. Aust. Math. Soc.98 (2018), 203-211.10.1017/S0004972718000515
- [5] K. Mahler, Zur Approximation der Exponentialfunktionen und des Logarithmus. I, II, J. reine angew. Math.166 (1932), 118-150.10.1515/crll.1932.166.137
- [6] K. Mahler,Ăber eine Klasseneinteilung der p-adischen Zahlen, Mathematica (Leiden)3 (1935), 177-185.
- [7] M. H. Oryan,Ăber gewisse Potenzreihen, die fĂŒr algebraische Argumente Werte aus der Mahlerschen Unterklassen Um nehmen, İstanbulĂniv. Fen Fak. Mecm. Ser. A45 (1980), 1-42.
- [8] M. H. Oryan, On power series and Mahlerâs Uânumbers, İstanbulĂniv. Fen Fak. Mecm. Ser. A47 (1990), 117-125.
- [9] M. H. Oryan, On power series and Mahlerâs Uânumbers, Math. Scand.65 (1989), 143-151.10.7146/math.scand.a-12273
- [10] D. Ridout, The p-adic generalization of the Thue-Siegel-Roth theorem, Mathematika5 (1958), 40-48.10.1112/S0025579300001339
- [11] K. F. Roth, Rational approximations to algebraic numbers, Mathematika2 (1955), 1-20; corrigendum, 168.10.1112/S0025579300000644
- [12] B. M. Zeren,Ăber die Transzendenz der Werte einiger schnell konvergenter Potenzreihen fĂŒr algebraische Argumente, İstanbul Tek.Ăniv. BĂŒl.38 (1985), 473-496.
- [13] B. M. Zeren,Ăber eine Klasse von verallgemeinerten LĂŒckenreihen, deren Werte fĂŒr algebraische Argumente transzendent, aber keine UâZahlen sind I, İstanbulĂniv. Fen Fak. Mat. Derg.50 (1991), 79-99.