Have a personal or library account? Click to login
Kohn-Vogelius formulation and high-order topological asymptotic formula for identifying small obstacles in a fluid medium Cover

Kohn-Vogelius formulation and high-order topological asymptotic formula for identifying small obstacles in a fluid medium

Open Access
|Apr 2020

References

  1. [1] G. Alessandrini and A. Diaz Valenzuela, Unique determination of multiple cracks by two measurements, SIAM. J. Control Optim. 34 (3), 1996, 913-921.10.1137/S0363012994262853
  2. [2] G. Alessandrini, E. Beretta and S. Vessela Determining linear cracks by boundary measurements: Lipschitz stability, SIAM J. Math. Anal. 27, 1996, 361-375.10.1137/S0036141094265791
  3. [3] S. Andrieux and A. Ben Abda Identification of planar cracks by complete overdetermined data: inversion formulae, Inverse Problems, 12, 1996, 553-563.10.1088/0266-5611/12/5/002
  4. [4] A. Ben Abda, H. Ben Ameur and M. Jaoua Identification of 2D cracks by elastic boundary measurements, Inverse Problems 15, 1999, 67-77.10.1088/0266-5611/15/1/011
  5. [5] N. Nishimura and S. Kobayashi A boundary integral equation method for an inverse problem related to crack detection, Int. J. Num. Methods Eng., 32(1991), pp. 1371-1387.10.1002/nme.1620320702
  6. [6] H. Ammari, S. Moskow, and M. Vogelius, Boundary integral formulas for reconstruction of electromagnetic imperfections of small diameter, ESAIM, Cont. Opt. Cal. Variat. vol. 9, 2004, 49-66.10.1051/cocv:2002071
  7. [7] M. Vogelius, and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities, Math. Model. Numer. Anal. 34 (2000), 723-748.10.1051/m2an:2000101
  8. [8] E. Beretta, E. Francini, and M. Vogelius, Asymptotic formulas for for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis, J. Math. Pures Appl. 82, 2003, 1277-1301.10.1016/S0021-7824(03)00081-3
  9. [9] D.J. Cedio-Fengya, S. Moskow, and M. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Problems. vol. 14, 1998, 553-595.10.1088/0266-5611/14/3/011
  10. [10] A. Friedman, and M. Vogelius, Identification of small inhomogeneties of extreme conductivity by boundary measurements: a theorem on continuous dependence, Arch. Rat. Mech. Anal., 105, 1989, 299-326.10.1007/BF00281494
  11. [11] C. Alves, and H. Ammari, Boundary integral formulae for the reconstruction of imperfections of small diameter in an elastic medium, SIAM, J. Appl. Math. 62, 2001, 94-106.10.1137/S0036139900369266
  12. [12] H. Ammari, H. Kang, G. Nakamura and K. Tanuma, Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion, J. Elasticity 67, 2002, 97-129.10.1142/9789812776228_0112
  13. [13] H. Ammari, M. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to presence of inhomogeneities of small diameter II. The full Maxwell’s equations, J. Math. Pures Appl. 80, 2001, 769-814.10.1016/S0021-7824(01)01217-X
  14. [14] F. Caubet, M. Dambrine, D. Kateb, and C. Z. Timimoun, A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid. Inverse Probl. Imaging, 7(1):123-157, (2013).10.3934/ipi.2013.7.123
  15. [15] S. Andrieux, T.N. Baranger, A. Ben Abda, Solving Cauchy problems by minimizing an energy-like functional Inverse Problems, 22 (2006) 115-134.10.1088/0266-5611/22/1/007
  16. [16] S. Garreau, Ph. Guillaume, M. Masmoudi, The topological asymptotic for PDE systems: The elastics case, SIAM J. contr. Optim. 39(6), 1756-1778, (2001).10.1137/S0363012900369538
  17. [17] Ph. Guillaume and K. Sid Idris, The topological asymptotic expansion for the Dirichlet Problem. SIAM J. Control. Optim. 41, 1052-1072, (2002).10.1137/S0363012901384193
  18. [18] Ph. Guillaume, K. Sid Idris, Topological sensitivity and shape optimization for the Stokes equations, SIAM J. Control Optim. 43 (1) 1-31, (2004).10.1137/S0363012902411210
  19. [19] M. Hassine, Shape optimization for the Stokes equations using topological sensitivity analysis. ARIMA, 5:216-229, (2006).10.46298/arima.1865
  20. [20] S. Amstutz, The topological asymptotic for the Navier-Stokes equations. ESAIM Control Optim. Calc. Var., 11(3):401-425 (electronic), (2005).10.1051/cocv:2005012
  21. [21] M. Abdelwahed, M. Hassine, Topological optimization method for a geometric control problem in Stokes flow. Appl. Numer. Math. 59(8), 1823-1838, (2009).10.1016/j.apnum.2009.01.008
  22. [22] M. Hassine, M. Masmoudi, The topological asymptotic expansion for the quasi-Stokes problem. ESAIM. Control, Optimisation and Calculus of Variations, vol. 10, no. 4, pp. 478-504, 2004.10.1051/cocv:2004016
  23. [23] M. Masmoudi, J. Pommier, and B. Samet, The topological asymptotic expansion for the Maxwell equations and some applications. Inverse Problems, 21(2):547-564, (2005).10.1088/0266-5611/21/2/008
  24. [24] S.T. Chung and T.H. Kwon, Numerical simulation of fiber orientation in injection moulding of short-fiber-reinforced thermoplastics, Polym. Eng. Sci. 7 (35), 1995, 604-618.10.1002/pen.760350707
  25. [25] X. Fan, N. Phan-Thien and R. Zheng, A direct simulation of fiber suspensions, J. Non-Newtonian Fluid Mech. 74, 1998), 113-135.10.1016/S0377-0257(97)00050-5
  26. [26] T. Gotz, Simulating particles in Stokes flow, J. Comput. Appl. Math. 175 (2005), 415-427.10.1016/j.cam.2004.06.019
  27. [27] C. Pozrikidis, Dynamic simulation of the flow of suspensions of two-dimensional particles with arbitrary shapes, Eng. Anal. Boundary Elements 25 (1) (2001), pp.19-30.10.1016/S0955-7997(00)00045-X
  28. [28] H. Zhou and C. Pozrikidis, Adaptive singularity method for Stokes flow past particles, J. Comput. Phys. 117 (1995), pp. 79-89.10.1006/jcph.1995.1046
  29. [29] R. Codina, U. Scha er and E. Oñate, Mould filling simulation using finite elements, Int. J. Numer. Meth. Fluid Flow 4, 1994, 291-310.10.1108/EUM0000000004108
  30. [30] G. Dhatt, D.M. Gao, A. Ben Cheikh, A finite element simulation of metal flow in moulds, Int. J. Numer. Meth. Eng. 30, 1990, 821-831.10.1002/nme.1620300416
  31. [31] K.M. Shyue, A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state, J. Comput. Phys. 156 (1999), pp. 43-88.10.1006/jcph.1999.6349
  32. [32] A. Ben Abda, M. Hassine, M. Jaoua, M. Masmoudi, Topological sensitivity analysis for the location of small cavities in Stokes flow,SIAM J. Contr. Optim, 2871-2900, (2009).10.1137/070704332
  33. [33] F. Caubet, M. Dambrine, Localization of small obstacles in Stokes flow. Inverse Problems, 28(10):105007, 31, (2012).10.1088/0266-5611/28/10/105007
  34. [34] L. Afraites, M. Dambrine, K. Eppler AND K.Kateb, Detecting perfectly insulated obstacles by shape optimization techniques of order two., Discrete Contin.Dyn. Syst., no 8(2), 389-416, (2007).10.3934/dcdsb.2007.8.389
DOI: https://doi.org/10.2478/auom-2020-0003 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 35 - 59
Submitted on: Feb 19, 2019
Accepted on: Apr 25, 2019
Published on: Apr 9, 2020
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Montassar Barhoumi, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.