Have a personal or library account? Click to login
Interpolative Rus-Reich-Ćirić Type Contractions via Simulation Functions Cover
Open Access
|Dec 2019

References

  1. [1] H. Argoubi, B. Samet, C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl. 8 (2015), 1082-1094.10.22436/jnsa.008.06.18
  2. [2] U. Aksoy, E. Karapınar, İ. M. Erhan, Fixed points of generalized α-admissible contractions on b-metric spaces with an application to boundary value problems, J.Nonlinear and Convex A., 17 (2016). No: 6, 1095-1108
  3. [3] H.H. Alsulami, E. Karapınar, F. Khojasteh, A.F. Roldán-López-de-Hierro, A proposal to the study of contractions in quasi-metric spaces, Discrete Dynamics in Nature and Society 2014, Article ID 269286, 10 pages.10.1155/2014/269286
  4. [4] A.S. Alharbi, H.H. Alsulami, E. Karapınar, On the Power of Simulation and Admissible Functions in Metric Fixed Point Theory, J. Funct. Spaces, Volume 2017 (2017), Article ID 2068163, 7 pages10.1155/2017/2068163
  5. [5] B. Alqahtani, A.Fulga, E. Karapinar, Fixed Point Results On Δ-Symmetric Quasi-Metric Space Via Simulation Function With An Application To Ulam Stability, Mathematics 2018, 6(10), 208;10.3390/math6100208
  6. [6] M.U. Ali, T. Kamram, E. Karapınar, An approach to existence of fixed points of generalized contractive multivalued mappings of integral type via admissible mapping, Abstr. Appl. Anal. 2014, (2014) Article ID 141489.10.1155/2014/141489
  7. [7] M.U. Ali, T. Kamran, E. Karapınar, On (α,ψ,η)-contractive multivalued mappings, Fixed Point Theory Appl. (2014), 2014:7.10.1155/2014/141489
  8. [8] S. Almezel, C.M. Chen, E. Karapınar, V. Rakocev, Fixed point results for various -admissible contractive mappings on metric-like spaces, Abstr. Appl. Anal. 2014 (2014) , Article ID 379358.10.1155/2014/379358
  9. [9] H. Alsulami, S. Gulyaz, E. Karapınar, I.M. Erhan, Fixed point theorems for a class of -admissible contractions and applications to boundary value problem, Abstr. Appl. Anal. 2014 (2014) Article ID 187031.10.1155/2014/187031
  10. [10] M. Arshad, E. Ameer, E. Karapınar, Generalized contractions with triangular -orbital admissible mapping on Branciari metric spaces J. Inequal. Appl. 2016, 2016:6310.1186/s13660-016-1010-7
  11. [11] H. Aydi, E. Karapınar, H. Yazidi, Modified F -Contractions via α-Admissible Mappings and Application to Integral Equations, Filomat, 31 (5)(2017), 1141-148.10.2298/FIL1705141A
  12. [12] H. Aydi, E. Karapınar, D. Zhang, A note on generalized admissible-Meir-Keeler-contractions in the context of generalized metric spaces, Results in Mathematics, 71 (2017) No. 1, 73–92.10.1007/s00025-015-0516-5
  13. [13] H. Aydi, M. Jellali, E. Karapınar, On fixed point results for -implicit contractions in quasi-metric spaces and consequences, Nonlinear Anal. Model. Control. 21 (1) (2016), 40-56.10.15388/NA.2016.1.3
  14. [14] H. Aydi, A.Felhi, E. Karapinar, F.A. Alojail, “Fixed points on quasi-metric spaces via simulation functions and consequences” Journal of Mathematical Analysis, Volume 9 Issue 2 (2018), Pages 10-24.
  15. [15] H. Aydi, E. Karapınar and V. Rakočević, Nonunique Fixed Point Theorems on b-Metric Spaces via Simulation Functions, Jordan Journal of Mathematics and statistics,(in press).
  16. [16] S. Banach, Sur les opérations dans les ensembles abstraits et leur application auxéquations intégrales, Fundamenta Mathematicae, 3 (1922), 133-181.10.4064/fm-3-1-133-181
  17. [17] C.M. Chen, A. Abkar, S. Ghods, E. Karapınar, Fixed Point Theory for the α-Admissible Meir-Keeler Type Set Contractions Having KKM* Property on Almost Convex Sets, Appl. Math. Inf. Sci. 11 (1) (2017), 171-176.10.18576/amis/110120
  18. [18] M. Jleli, E. Karapınar, B. Samet, Best proximity points for generalized α − ψ-proximal contractive type mappings, J. Appl. Math. 2013 (2013) Article ID 534127, .10.1155/2013/534127
  19. [19] M. Jleli, E. Karapınar, B. Samet, Fixed point results for α − ψλ-contractions on gauge spaces and applications, Abstr. Appl. Anal. 2013 (2013) Article ID 730825.10.1155/2013/730825
  20. [20] Jleli, M., Karapınar, E., Samet, B., Best proximity points for generalized α − ψ -proximal contractive type mappings, J. Appl. Math., 2013 (2013) Article ID 534127.10.1155/2013/534127
  21. [21] Jleli, M., Karapınar, E., Samet, B., Fixed point results for α − ψλ contractions on gauge spaces and applications, Abstr. Appl. Anal., 2013 (2013) Article Id, 730825.10.1155/2013/730825
  22. [22] K. Hammache, E. Karapınar, A. Ould-Hammouda, On Admissible weak contractions in b-metric-like space, J. Math. Anal. 8 (3) 2017), 167-180.
  23. [23] E. Karapınar, S. Czerwik, H. Aydi, (α , ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces, J. Funct. Spaces, Volume 2018 (2018), Article ID 3264620, 4 pages.10.1155/2018/3264620
  24. [24] E. Karapınar, B. Samet, Generalized (α – ψ)-contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal. 2012 (2012) Article iD 793486.10.1186/1687-1812-2012-107
  25. [25] E.Karapinar, A.Roldan, D. Oregan, “Coincidence point theorems on quasi-metric spaces via simulation functions and applications to G-metric spaces”, Journal of Fixed Point Theory and Applications. https://doi.org/10.1007/s11784-018-0582-x10.1007/s11784-018-0582-x
  26. [26] E. Karapinar, F. Khojasteh An approach to best proximity points results via simulation functions, Journal of Fixed Point Theory and Applications, 19(3), 1983-1995 , 201710.1007/s11784-016-0380-2
  27. [27] E. Karapinar, Fixed points results via simulation functions, Filomat, 30(2016) No:8, 2343-235010.2298/FIL1608343K
  28. [28] E. Karapınar, Revisiting the Kannan type contractions via interpolation, Advances in the Theory of Nonlinear Analysis and its Applications, 2 (2018) No:2, 85–87.10.31197/atnaa.431135
  29. [29] E. Karapınar, R.P. Agarwal, H. Aydi, Interpolative Reich-Rus-Ćirić Type Contractions on Partial Metric Spaces. Mathematics 2018, 6, 256.10.3390/math6110256
  30. [30] E. Karapinar, O.Alqahtani, H. Aydi, On Interpolative Hardy-Rogers Type Contractions, Symmetry, 2019, 11(1), 8;10.3390/sym11010008
  31. [31] E. Karapinar, H.H. Alsulami and M. Noorwali, Some extensions for Geragthy type contractive mappings Journal of Inequalities and Applications 2015, 2015:303 (26 September 2015)10.1186/s13660-015-0830-1
  32. [32] E. Karapınar, Discussion on (α , ψ contractions on generalized metric spaces, Abstr. Appl. Anal., 2014 (2014) Article ID 962784.10.1186/1029-242X-2014-423
  33. [33] E. Karapınar, Fixed points results for α-admissible mapping of integral type on generalized metric spaces, Abstr. Appl. Anal., 2014 (2014), Article Id: 141409
  34. [34] E. Karapınar, On (α , ψ) contractions of integral type on generalized metric spaces, in Proceedings of the 9th ISAAC Congress, V. Mityushevand, M. Ruzhansky, Eds., Springer, Krakow, Poland, 2013.
  35. [35] E. Karapınar, B. Samet, Generalized α- ψ-contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal. 2012 (2012) Article ID 793486.10.1186/1687-1812-2012-107
  36. [36] E. Karapınar, P. Kumam, P. Salimi, On α– ψ-Meir-Keeler contractive mappings, Fixed Point Theory Appl. (2013), 2013:94 .10.1186/1687-1812-2013-94
  37. [37] F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theorems via simulation functions, Filomat 29:6 (2015), 1189–194.10.2298/FIL1506189K
  38. [38] Krein, S.G.; Petunin, J.I.; Semenov, E.M. Interpolation Of Linear Operators; American Mathematical Society: Providence, RI, USA, 1978.
  39. [39] O. Popescu, Some new fixed point theorems for α-Geraghty contractive type maps in metric spaces, Fixed Point Theory Appl. 2014, 2014:19010.1186/1687-1812-2014-190
  40. [40] A.F. Roldán-López-de-Hierro, E. Karapınar, C. Roldán-López-de-Hierro, J. Martínez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math. 275 (2015) 345–355.10.1016/j.cam.2014.07.011
  41. [41] B. Samet, C. Vetro, P. Vetro, Fixed point theorem for α – ψ contractive type mappings, Nonlinear Anal. 75 (2012) 2154–2165.10.1016/j.na.2011.10.014
  42. [42] I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, Romania, 2001.
  43. [43] S. Reich, Some remarks concerning contraction mappings, Can. math. Bull. 14 (1971) 121–124 .10.4153/CMB-1971-024-9
  44. [44] S. Reich, Fixed point of contractive functions, Boll. Un. mat. Ital. (4)(1972) no.5, 26–42 .
  45. [45] S. Reich, Kannan’s fixed point theorem, Boll. Un. mat. Ital. (4)(1971) no.4, 1–11 .
  46. [46] I.A. Rus, Principles and Applications of the Fixed Point Theory (in Romanian), Editura Dacia, Clui-Napoca, 1979
  47. [47] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Clui-Napoca, 2001
DOI: https://doi.org/10.2478/auom-2019-0038 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 137 - 152
Submitted on: Jan 1, 2019
Accepted on: Jan 31, 2019
Published on: Dec 21, 2019
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Erdal Karapınar, Ravi P. Agarwal, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.