Have a personal or library account? Click to login
Depth and Stanley depth of the edge ideals of the powers of paths and cycles Cover

Depth and Stanley depth of the edge ideals of the powers of paths and cycles

By: Zahid Iqbal and  Muhammad Ishaq  
Open Access
|Dec 2019

References

  1. [1] J. Apel, On a conjecture of R. P. Stanley; Part II Quotients modulo monomial ideals, J. Algebraic Combin., 17, (2003) 57-74.10.1023/A:1021916908512
  2. [2] C. Biro, D. M. Howard, M. T. Keller, W. T. Trotter, S. J. Young, Interval partitions and Stanley depth, J. Combin. Theory, Ser. A, 117, (2010) 475-482.10.1016/j.jcta.2009.07.008
  3. [3] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, 2008.10.1007/978-1-84628-970-5
  4. [4] M. Cimpoeas, Several inequalities regarding Stanley depth, Romanian Journal of Math. and Computer Science, 2, (2012) 28-40.
  5. [5] M. Cimpoeas, Stanley depth of squarefree Veronese ideals, An. St. Univ. Ovidius Constanta, 21(3), (2013) 67-71.10.2478/auom-2013-0043
  6. [6] M. Cimpoeas, On the Stanley depth of edge ideals of line and cyclic graphs, Romanian Journal of Math. and Computer Science, 5(1), (2015) 70-75.
  7. [7] M. Cimpoeas, Some remarks on the Stanley depth for multigraded modules, Le Matematiche LXIII, (2008) 165-171.
  8. [8] A. M. Duval, B. Goeckneker, C. J. Klivans, J. L. Martine, A nonpartitionable Cohen-Macaulay simplicial complex, Adv. Math., 299, (2016) 381-395.10.1016/j.aim.2016.05.011
  9. [9] J. Herzog, A survey on Stanley depth, In Monomial ideals, computations and applications, Lecture Notes in Math. Springer, Heidelberg, 2083, (2013) 3-45.10.1007/978-3-642-38742-5_1
  10. [10] J. Herzog, T. Hibi, Monomial Ideals, Springer-Verlag London Limited, (2011).10.1007/978-0-85729-106-6
  11. [11] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322(9), (2009) 3151-3169.10.1016/j.jalgebra.2008.01.006
  12. [12] J. Herzog, D. Popescu, M. Vladoiu, Stanley depth and size of a monomial ideal, Proc. Amer. Math. Soc., 140(2), (2012) 493-504.10.1090/S0002-9939-2011-11160-2
  13. [13] Z. Iqbal, M. Ishaq, M. Aamir, Depth and Stanley depth of edge ideals of square paths and square cycles, Comm. Algebra, 46(3), (2018), 1188-1198.10.1080/00927872.2017.1339068
  14. [14] M. Ishaq, M. I. Qureshi, Upper and lower bounds for the Stanley depth of certain classes of monomial ideals and their residue class rings, Comm. Algebra, 41(3), (2013) 1107-1116.10.1080/00927872.2011.630708
  15. [15] M. T. Keller, Y. Shen, N. Streib, S. J. Young, On the Stanley Depth of Squarefree Veronese Ideals, J. Algebraic Combin., 33(2), (2011) 313-324.10.1007/s10801-010-0249-1
  16. [16] M. T. Keller, S. J. Young, Combinatorial reductions for the Stanley depth of I and S/I, Electron. J. Combin. 24(3), (2017) #P3.48.10.37236/6783
  17. [17] M. C. Lin, D. Rautenbach, F. J. Soulignac, J. L. Szwarcfiter, Powers of cycles, powers of paths, and distance graphs, Discrete Appl. Math., 159, (2011) 621-627.10.1016/j.dam.2010.03.012
  18. [18] S. Morey, Depths of powers of the edge ideal of a tree, Comm. Algebra, 38(11), (2010) 4042-4055.10.1080/00927870903286900
  19. [19] R. Okazaki, A lower bound of Stanley depth of monomial ideals, J. Commut. Algebra, 3(1), (2011) 83-88.10.1216/JCA-2011-3-1-83
  20. [20] D. Popescu, M. I. Qureshi, Computing the Stanley depth, J. Algebra, 323(10),(2010) 2943-2959.10.1016/j.jalgebra.2009.11.025
  21. [21] D. Popescu, Stanley conjecture on intersection of four monomial prime ideals, Comm. Algebra, 41(11), (2013) 4351-4362.10.1080/00927872.2012.699568
  22. [22] M. R. Pournaki, S. A. Seyed Fakhari, S. Yassemi, Stanley depth of powers of the edge ideals of a forest, Proc. Amer. Math. Soc., 141(10), (2013) 3327-3336.10.1090/S0002-9939-2013-11594-7
  23. [23] A. Rauf, Depth and Stanley depth of multigraded modules, Comm. Algebra, 38(2), (2010) 773-784.10.1080/00927870902829056
  24. [24] R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math., 68(2), (1982) 175-193.10.1007/BF01394054
  25. [25] A. Stefan, Stanley depth of powers of path ideal, http://arxiv.org/pdf/1409.6072.pdf.
  26. [26] Z. Tang, Stanley depths of certain StanleyReisner rings, J. Algebra, 409(1), (2014) 430-443.10.1016/j.jalgebra.2014.03.020
DOI: https://doi.org/10.2478/auom-2019-0037 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 113 - 135
Submitted on: Nov 6, 2018
Accepted on: Jan 11, 2019
Published on: Dec 21, 2019
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Zahid Iqbal, Muhammad Ishaq, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.