Have a personal or library account? Click to login
Estimates of the Laplacian Spectrum and Bounds of Topological Invariants for Riemannian Manifolds with Boundary Cover

Estimates of the Laplacian Spectrum and Bounds of Topological Invariants for Riemannian Manifolds with Boundary

By: Luca Sabatini  
Open Access
|Sep 2019

References

  1. [1] M. Berger, P. Gauduchon, E. Mazet, Le spectre d’une variété riemannienne, Lecture notes in Maths 194, Springer (1987).
  2. [2] M. P. do Carmo, Riemannian Geometry, Birkäuser, Boston (1992);10.1007/978-1-4757-2201-7
  3. [3] S. Gallot: A Sobolev inequality and some geometric applications, Spectra of Riemannian manifolds, Kaigai Publication, Tokyo (1983), pp. 45-55.
  4. [4] S. Gallot: Inégalités isopérimetriques, courbure de Ricci et invariants géométriques I, C. R. Acad. Sci. serie I, 296 (1983), pp. 333-336.
  5. [5] S. Gallot: Inégalités isopérimetriques, courbure de Ricci et invariants géométriques II, C. R. Acad. Sci. serie I, 296 (1983), pp. 365-368.
  6. [6] S. Gallot, D. Hulin, J. La Fontaine, Riemannian Geometry, Springer, Berlin (2007).
  7. [7] M. Gromov: Structures métriques pour les variétés riemanniennes, Textes Math. 1, Cedic-Nathan, (1981).
  8. [8] J. Hersch: Quatre propriétés isopérimétriques de membranes sphériques homogénes, C. R. Acad. Sci. Paris, 270 (1970), pp. 1645-1648.
  9. [9] F. Laudenbach: A Morse Complex for Manifolds with boundary, Geom. Dedicata 153 (2011), pp. 47-57.10.1007/s10711-010-9555-y
  10. [10] P. Li, S. T. Yau: Estimates of eigenvalues of a compact Riemannian manifold, AMS Proc. Symp. Pure Math. 36 (1980), pp. 205-240;10.1090/pspum/036/573435
  11. [11] D. Meyer: Minoration de la premiere valeur propre non nulle du problème de Neumann sur les variétés riemanniens à bord, Ann. Inst. Fouruer, Grenoble 36, 2 (1986), pp.113-125;10.5802/aif.1051
  12. [12] L. E. Payne and H. F. Weinberger: Lower bounds for vibration frequencies of elastically supported membranes and plates, J. Soc. Ind. Appi. Math. 5 (1957), pp. 171-182.10.1137/0105012
  13. [13] L. Sabatini: Estimation of Vibration Frequencies of Linear Elastic Membranes, Applications of Mathematics 63 (2018), pp. 37-53;10.21136/AM.2018.0316-16
  14. [14] P. Yang, S. T. Yau: Eigenvalues of the laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Scuola N. Sup. Pisa 7 (1980), pp. 55-63
DOI: https://doi.org/10.2478/auom-2019-0027 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 179 - 211
Submitted on: Aug 22, 2018
Accepted on: Sep 12, 2018
Published on: Sep 26, 2019
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Luca Sabatini, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.