Have a personal or library account? Click to login
Characterizations of Generalized Exponential Trichotomies for Linear Discrete-time Systems Cover

Characterizations of Generalized Exponential Trichotomies for Linear Discrete-time Systems

Open Access
|Sep 2019

References

  1. [1] A.I. Alonso, J. Hong, R. Obaya, Exponential dichotomy and trichotomy for difference equations, Comput. Math. Appl. Vol. 38 (1999), 41-49.10.1016/S0898-1221(99)00167-4
  2. [2] A. Castaneda, G. Robledo, A Topological Equivalence Result for a Family of Nonlinear Difference Systems Having Generalized Exponential Dichotomy, J. Difference Equ. Appl., DOI:10.1080/10236198.2016.119216110.1080/10236198.2016.1192161
  3. [3] L. Dingjun, W. Xian, Z. Deming, H. Maoan, Bifurcation Theory and Methods od Dynamical Systems, Advenced Series in Dynamical Systems, Vol. 15, World Scientific, 1997
  4. [4] A. Ducrot, P. Magal, O. Seydi, Persistence of Exponential Trichotomy for Linear Operators: A Lyapunov-Perron Approach, J. Dynam. Differential Equations, Vol. 28 (2016), 93-126.10.1007/s10884-015-9493-3
  5. [5] S. Elaydi, K. Janglajew, Dichotomy and Trichotomy of Difference Equations, J. Difference Equ. Appl. Vol. 3 (1998), 417-448.10.1080/10236199708808113
  6. [6] N. Lupa, M. Megan, Generalized exponential trichotomies for abstract evolution operators on the real line, J. Funct. Spaces Appl., Vol. 2013, Article ID 409049, 8 pages, 2013.10.1155/2013/409049
  7. [7] C.L. Mihit, M. Megan, T. Ceausu, The Equivalence of Datko and Lyapunov Properties for (h,k)-Trichotomic Linear Discrete-Time Systems, Discrete Dyn. Nat. Soc. Volume 2016, Article ID 3760262, 8 pages10.1155/2016/3760262
  8. [8] G. Papaschinopoulos, A Linearization result for a differential equation with piecewise constant argument, Analysis, 16 (1996), 161-170.10.1524/anly.1996.16.2.161
  9. [9] G. Papaschinopoulos, On exponential trichotomy of linear difference equations Appl. Anal. 40 (1991), 89-109.10.1080/00036819108839996
  10. [10] I.-L. Popa, T. Ceausu, Generalized exponential trichotomy for difference equations, IEEE 11th International Symposium on Applied Computational Intelligence and Informatics, 2016, 173-176.10.1109/SACI.2016.7507357
  11. [11] I.-L. Popa, T. Ceauşu, O. Bagdasar, Characterizations of generalized exponential trichotomies for linear discrete-time systems, Electron. Notes Discrete Math., 56 (2016), 7-13.10.1016/j.endm.2016.11.002
  12. [12] I.-L. Popa, M. Megan, T. Ceauşu, On h-Trichotomy of Linear Discrete-Time Systems in Banach Spaces, Acta Univ. Aplulensis Ser. Mat. Inf., 39 (2014), 329-339.10.17114/j.aua.2014.39.28
  13. [13] I.-L. Popa, T. Ceauşu, M. Megan, Characterizations of the (h, k, μ, ν)−Trichotomy for Linear Time-Varying Systems, Math. Methods Appl. Sci., 40 (17), 2016, 6172-6177.10.1002/mma.3907
  14. [14] C. Vidal, C. Cuevas, Wighted Exponential Trichotomy of Linear Differential Equations, Proceedings of the Conference on Differential & Difference Equations and Applications, 2006, 1077-1086.
  15. [15] Z.-G. Li, X.-Q. Song, X.-L. Yang, On nonuniform polynomial trichotomy of linear discrete-time systems in Banach spaces, J. Appl. Math., vol. 2014, Article ID 807265, 6 pages, 2014.10.1155/2014/807265
DOI: https://doi.org/10.2478/auom-2019-0025 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 153 - 166
Submitted on: Jun 26, 2018
Accepted on: Jul 30, 2018
Published on: Sep 26, 2019
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Ioan-Lucian Popa, Traian Ceauşu, Ovidiu Bagdasar, Ravi P. Agarwal, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.