Have a personal or library account? Click to login
Steiner Degree Distance of Two Graph Products Cover

References

  1. [1] P. Ali, P. Dankelmann, S. Mukwembi, Upper bounds on the Steiner diameter of a graph, Discr. Appl. Math.160 (2012) 1845–1850.10.1016/j.dam.2012.03.031
  2. [2] P. Ali, S. Mukwembi, S. Munyira, Degree distance and vertex–connectivity, Discr. Appl. Math.161 (2013) 2802–2811.10.1016/j.dam.2013.06.033
  3. [3] P. Ali, S. Mukwembi, S. Munyira, Degree distance and edge–connectivity, Australas. J. Comb.60 (2014) 50–68.
  4. [4] M. An, L. Xiong, K.C. Das, Two upper bounds for the degree distances of four sums of graphs, Filomat28 (2014) 579–590.10.2298/FIL1403579A
  5. [5] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York, 2008.10.1007/978-1-84628-970-5
  6. [6] O. Bucicovschi, S. M. Cioabă, The minimum degree distance of graphs of given order and size, Discr. Appl. Math.156 (2008) 3518–3521.10.1016/j.dam.2008.03.036
  7. [7] F. Buckley, F. Harary, Distance in Graphs, Addison–Wesley, Redwood, 1990.
  8. [8] J. Cáceresa, A. Márquezb, M. L. Puertasa, Steiner distance and convexity in graphs, Eur. J. Comb.29 (2008) 726–736.10.1016/j.ejc.2007.03.007
  9. [9] G. Chartrand, O. R. Oellermann, S. Tian, H. B. Zou, Steiner distance in graphs, Časopis Pest. Mat.114 (1989) 399–410.10.21136/CPM.1989.118395
  10. [10] P. Dankelmann, O. R. Oellermann, H. C. Swart, The average Steiner distance of a graph, J. Graph Theory22 (1996) 15–22.10.1002/(SICI)1097-0118(199605)22:1<;15::AID-JGT3>3.0.CO;2-O
  11. [11] A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and application, Acta Appl. Math.66 (2001) 211–249.10.1023/A:1010767517079
  12. [12] A. A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math.72 (2002) 247–294.10.1023/A:1016290123303
  13. [13] A. Dobrynin, A. Kochetova, Degree distance of a graph: A degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci.34 (1994) 1082–1086.10.1021/ci00021a008
  14. [14] W. Goddard, O. R. Oellermann, Distance in graphs, in: M. Dehmer (Ed.), Structural Analysis of Complex Networks, Birkhäuser, Dordrecht, 2011, pp. 49–72.10.1007/978-0-8176-4789-6_3
  15. [15] T. Gologranc, Steiner Convex Sets and Cartesian Product, Bull. Malays. Math. Sci. Soc. DOI 10.1007/s40840-016-0312-8.10.1007/s40840-016-0312-8
  16. [16] I. Gutman, On Steiner degree distance of trees, Appl. Math. Comput.283 (2016) 163–167.10.1016/j.amc.2016.02.038
  17. [17] I. Gutman, On two degree-and-distance-based graph invariants, Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math. Natur.), in press.
  18. [18] I. Gutman, B. Furtula, K. C. Das, On some degree–and–distance–based graph invariants of trees, Appl. Math. Comput.289 (2016) 1–6.10.1016/j.amc.2016.04.040
  19. [19] I. Gutman, Y. N. Yeh, S. L. Lee, Y. L. Luo, Some recent results in the theory of the Wiener number, Indian J. Chem.32A (1993) 651–661.
  20. [20] M. Knor, R. Škrekovski, A. Tepeh, Mathematical aspects of Wiener index, Ars Math. Contemp.11 (2016) 327–352.10.26493/1855-3974.795.ebf
  21. [21] X. Li, Y. Mao, I. Gutman, The Steiner Wiener index of a graph, Discuss. Math. Graph Theory36 (2016) 455–465.10.7151/dmgt.1868
  22. [22] X. Li, Y. Mao, I. Gutman, Inverse problem on the Steiner Wiener index, Discuss. Math. Graph Theory38 (2018) 83–95.10.7151/dmgt.2000
  23. [23] Y. Mao, The Steiner diameter of a graph, Bull. Iran. Math. Soc.43 (2) (2017) 439–454.
  24. [24] Y. Mao, E. Cheng, Z. Wang, Steiner distance in product networks, arXiv:1703.01410 [math.CO] 2017.
  25. [25] Y. Mao, K. C. Das, Steiner Gutman index, MATCH Commun. Math. Comput. Chem.79 (3) (2018) 779–794.
  26. [26] Y. Mao, Z. Wang, I. Gutman, Steiner Wiener index of graph products, Trans. Combin.5 (3) (2016) 39–50.
  27. [27] Y. Mao, Z. Wang, I. Gutman, A. Klobučar, Steiner degree distance, MATCH Commun Math. Comput. Chem.78 (1) (2017) 221–230.
  28. [28] Y. Mao, Z. Wang, I. Gutman, H. Li, Nordhaus-Gaddum-type results for the Steiner Wiener index of graphs, Discrete Appl. Math.219 (2017) 167–175.10.1016/j.dam.2016.11.014
  29. [29] Y. Mao, Z. Wang, Y. Xiao, C. Ye, Steiner Wiener index and connectivity of graphs, Utilitas Math.102 (2017) 51–57.
  30. [30] S. Mukwembi, S. Munyira, Degree distance and minimum degree, Bull. Austral. Math. Soc.87 (2013) 255–271.10.1017/S0004972712000354
  31. [31] O. R. Oellermann, S. Tian, Steiner centers in graphs, J. Graph Theory14 (1990) 585–597.10.1002/jgt.3190140510
  32. [32] K. Pattabiraman, P. Kandan, Generalization of the degree distance of the tensor product of graphs, Australas. J. Comb.62 (2015) 211–227.
  33. [33] D. H. Rouvray, Harry in the limelight: The life and times of Harry Wiener, in: D. H. Rouvray, R. B. King (Eds.), Topology in Chemistry – Discrete Mathematics of Molecules, Horwood, Chichester, 2002, pp. 1–15.10.1016/B978-1-898563-76-1.50005-6
  34. [34] D. H. Rouvray, The rich legacy of half century of the Wiener index, in: D. H. Rouvray, R. B. King (Eds.), Topology in Chemistry – Discrete Mathematics of Molecules, Horwood, Chichester, 2002, pp. 16–37.10.1016/B978-1-898563-76-1.50006-8
  35. [35] V. Sheeba Agnes, Degree distance and Gutman index of corona product of graphs, Trans. Comb.4 (3) (2015) 11–23.
  36. [36] K. Xu, M. Liu, K. C. Das, I. Gutman, B. Furtula, A survey on graphs extremal with respect to distance–based topological indices, MATCH Commun. Math. Comput. Chem.71 (2014) 461–508.
DOI: https://doi.org/10.2478/auom-2019-0020 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 83 - 99
Submitted on: Apr 10, 2018
Accepted on: Jul 30, 2018
Published on: Sep 26, 2019
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Yaping Mao, Zhao Wang, Kinkar Ch. Das, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.