Have a personal or library account? Click to login
Global invariants of paths and curves for the group of orthogonal transformations in the two-dimensional Euclidean space Cover

Global invariants of paths and curves for the group of orthogonal transformations in the two-dimensional Euclidean space

Open Access
|Sep 2019

References

  1. [1] Alcázar, J. G., Hermoso, Carlos, M., Muntingh, G., Detecting similarity of rational plane curves. J. Comput. Appl. Math 269 (2014), 113.10.1016/j.cam.2014.03.013
  2. [2] Alexandrov, A. D., Reshetnyak, Yu. G., General Theory of Irregular Curves. Kluwer Acad. Publ., Dordrecht, 1989.10.1007/978-94-009-2591-5
  3. [3] Aminov, Yu., Differential Geometry and Topology of Curves. CRC Press, New York, 2000.
  4. [4] Aripov, R. G., Khadjiev (Khadzhiev) D., The complete system of global differential and integral invariants of a curve in Euclidean geometry. Russian Mathematics (Iz VUZ), 51(7),(2007) 1-14.10.3103/S1066369X07070018
  5. [5] Berger, M., Geometry I. Springer-Verlag, Berlin Heidelberg, 1987.
  6. [6] Chou, K. S., Qu, C. Z., Integrable equations arising from motions of plane curves. Phys. D 162(1-2) (2002) 9-33.10.1016/S0167-2789(01)00364-5
  7. [7] Chou, K. S., Qu, C. Z., Integrable equations and motions of plane curves. Symmetry in nonlinear mathematical physics, Part 1, 2 Kyiv, (2001) 281-290.10.1016/S0167-2789(01)00364-5
  8. [8] Gibson, G. G., Elementary Geometry of Differentiable Curves. An Undergraduate Introduction. Cambridge University Press, 2001.10.1017/CBO9781139173377
  9. [9] Guggenheimer, H., W., Differential Geometry. McGraw-Hill Book Company, Inc., New York, 1963.
  10. [10] Hauer, M., Jüttler, B. Detecting affine equivalences of planar rational curves. EuroCG 2016, Lugano, Switzerland, March 30-April 1, 2016.
  11. [11] Inoguchi, J., Attractive plane curves in differential geometry. Mathematical Progress in Expressive Image Synthesis III, (2016) 121-135.10.1007/978-981-10-1076-7_13
  12. [12] Khadjiev, D., Application of the Invariant Theory to the Differential Geometry of Curves. Fan Publisher, Tashkent, 1988. [in Russian].
  13. [13] Khadjiev, D., Complete systems of differential invariants of vector fields in a Euclidean space. Turk J. Math., 34, (2010) 543-560.10.3906/mat-0809-10
  14. [14] Khadjiev, D., On invariants of immersions of an n-dimensional manifold in an n-dimensional pseudo-Euclidean space. J Nonlinear Math Phys, 17, Supp 01 (2010) 49-70.10.1142/S1402925110000799
  15. [15] Khadjiev D., Peksen Ö., The complete system of global differential and integral invariants of equiaffne curves. Diff. Geom. And Appl., 20 (2004) 168-175.10.1016/j.difgeo.2003.10.005
  16. [16] Khadjiev, D., Ören, İ., Pekşen, Ö., Generating systems of differential invariants and the theorem on existence for curves in the pseudo-Euclidean geometry. Turk J. Math., 37 (2013) 80-94.10.3906/mat-1104-41
  17. [17] Kreyszig, E., Introduction to Differential Geometry and Riemannian Geometry. Univ. of Toronto Press, 1968.10.3138/9781487589448
  18. [18] Mozo-Fernandez, J., Munuera, C., Recognition of polynomial plane curves under affine transformations. AAECC 13 (2002) 121-136.10.1007/s002000200095
  19. [19] O’Neill, B., Elementary Differential Geometry, Elsevier, 2006.10.1016/B978-0-12-088735-4.50011-0
  20. [20] Ören, İ., Equivalence conditions of two Bézier curves in the Euclidean geometry. Iran J Sci Technol Trans Sci. DOI number: 10.1007/s40995-016-0129-1.(in press)10.1007/s40995-016-0129-1.(
  21. [21] Pekşen, Ö., Khadjiev, D., On invariants of null curves in the pseudo-Euclidean geometry. Diff. Geom. And Appl. 29 (2011) S183-187.10.1016/j.difgeo.2011.04.024
  22. [22] Pekşen, Ö., Khadjiev, D., Ören, İ, Invariant parametrizations and complete systems of global invariants of curves in the pseudo-Euclidean geometry. Turk J. Math., 36 (2012) 147-160.10.3906/mat-0911-145
  23. [23] Yaglom, I. M., Complex Numbers in Geometry. Academic Press, New York, 1968.
  24. [24] Zwikker, C., The Advanced Geometry of Plane Curves and Their Applications. Dover Publications, INC., New York, 1963.
DOI: https://doi.org/10.2478/auom-2019-0018 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 37 - 65
Submitted on: Apr 6, 2018
Accepted on: Jun 30, 2018
Published on: Sep 26, 2019
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Djavvat Khadjiev, İdris Ören, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.