Have a personal or library account? Click to login
Multiple solutions for eigenvalue problems involving an indefinite potential and with (p1(x), p2(x)) balanced growth Cover

Multiple solutions for eigenvalue problems involving an indefinite potential and with (p1(x), p2(x)) balanced growth

Open Access
|Mar 2019

References

  1. [1] K. Ben Ali, A. Ghanmi, K. Kefi, On the Steklov problem involving the p(x)-Laplacian with indefinite weight, Opuscula Math., 37(6), 2017, 779–794.10.7494/OpMath.2017.37.6.779
  2. [2] S. Baraket, S. Chebbi, N. Chorfi, V. Rădulescu, Non-autonomous eigenvalue problems with variable (p1, p2)-growth, Advanced Nonlinear Studies, 17(4), 2017, 781-792.10.1515/ans-2016-6020
  3. [3] P. Baroni, M. Colombo, G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Mathematical Journal, 27, 2016, 347-379.10.1090/spmj/1392
  4. [4] M. Cavalcanti, V. Domingos Cavalcanti, I. Lasiecka, C. Webler, Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density, Adv. Nonlinear Anal., 6(2), 2017, 121-145.10.1515/anona-2016-0027
  5. [5] M. Cencelj, D. Repovš, Ž. Virk, Multiple perturbations of a singular eigenvalue problem, Nonlinear Anal., 119, 2015, 37-45.10.1016/j.na.2014.07.015
  6. [6] M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Archive for Rational Mechanics and Analysis, 218, 2015, 219-273.10.1007/s00205-015-0859-9
  7. [7] M. Colombo, G. Mingione, Calderón-Zygmund estimates and non-uniformly elliptic operators, Journal of Functional Analysis, 270, 2016, 1416-1478.10.1016/j.jfa.2015.06.022
  8. [8] L. Diening, P. Hästö, P. Harjulehto, M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer Lecture Notes, vol. 2017, Springer-Verlag, Berlin 2011.10.1007/978-3-642-18363-8
  9. [9] X. L. Fan, Remarks on eigenvalue problems involving the p(x)-Laplacian, J. Math. Anal. Appl., 352, 2009, 85-98.10.1016/j.jmaa.2008.05.086
  10. [10] Y. Fu, Y. Shan, On the removability of isolated singular points for elliptic equations involving variable exponent, Adv. Nonlinear Anal., 5(2), 2016, 121-132.10.1515/anona-2015-0055
  11. [11] K. Kefi, V. Rădulescu, On a p(x)-biharmonic problem with singular weights, Z. Angew. Math. Phys., 68(4), 2017, Art. 80, 13 pp.10.1007/s00033-017-0827-3
  12. [12] I. H. Kim, Y. H. Kim, Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents, Manuscripta Math., 147, 2015, 169-191.10.1007/s00229-014-0718-2
  13. [13] P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 3, 1986, 391-409.10.1016/s0294-1449(16)30379-1
  14. [14] P. Marcellini, Regularity and existence of solutions of elliptic equations with (p, q)-growth conditions, J. Differential Equations, 90, 1991, 1-30.10.1016/0022-0396(91)90158-6
  15. [15] M. Mihăilescu, V. Rădulescu, Concentration phenomena in nonlinear eigenvalue problems with variable exponents and sign-changing potential, Journal d’Analyse Mathmatique, 111, 2010, 267-287.10.1007/s11854-010-0018-z
  16. [16] M. Mihăilescu, V. Rădulescu, D. Repovš, On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space setting, J. Math. Pures Appl. (Journal de Liouville), 93, 2010, 132-148.10.1016/j.matpur.2009.06.004
  17. [17] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, 1983.10.1007/BFb0072210
  18. [18] V. Rădulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Analysis: Theory, Methods and Applications, 121, 2015, 336-369.10.1016/j.na.2014.11.007
  19. [19] V. Rădulescu, D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press, Taylor & Francis Group, Boca Raton FL, 2015.
  20. [20] D. Repovš, Stationary waves of Schrödinger-type equations with variable exponent, Anal. Appl. (Singap.), 13, 2015, 645-661.10.1142/S0219530514500420
  21. [21] I. Stăncuţ, I. Stîrcu, Eigenvalue problems for anisotropic equations involving a potential on Orlicz-Sobolev type spaces, Opuscula Math., 36(1), 2016, 81-101.10.7494/OpMath.2016.36.1.81
DOI: https://doi.org/10.2478/auom-2019-0015 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 289 - 307
Submitted on: Jan 21, 2018
|
Accepted on: Feb 19, 2018
|
Published on: Mar 2, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Vasile-Florin Uţă, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.