Have a personal or library account? Click to login
Hyperideal theory in ordered Krasner hyperrings Cover

References

  1. [1] R. Ameri, A. Kordi and S. Hoskova-Mayerova, Multiplicative hyperring of fractions and coprime hyperideals, An. Stiint. Univ. “Ovidius” Constanta Ser. Mat., 25(1) (2017), 5-23.10.1515/auom-2017-0001
  2. [2] R. Ameri, S. Hoskova-Mayerova and A. Kordi, Pseudo regular rings derived from multiplicative hyperrings, In: Aplimat 16th Conference on Applied Mathematics 2017 Proceedings. Bratislava: Vydavatelstvo STU Slovak University of Technology in Bratislava, 2017, pp. 17-27.
  3. [3] F. W. Anderson, Lattice-ordered rings of quotients, Canadian Journal of Mathematics, 17 (1965), 434-448.10.4153/CJM-1965-044-7
  4. [4] A. Asokkumar, Derivations in hyperrings and prime hyperrings, Iran. J. Math. Sci. Inform., 8 (2013), 1-13.
  5. [5] M. Bakhshi and R. A. Borzooei, Ordered polygroups, Ratio Mathematica, 24 (2013), 31-40.
  6. [6] T. Changphas and B. Davvaz, Properties of hyperideals in ordered semi-hypergroups, Italian J. Pure Appl. Math., 33 (2014), 425-432.
  7. [7] J. Chvalina, Commutative hypergroups in the sence of Marty and ordered sets, General algebra and ordered sets (Horni Lipova, 1994), 19-30.
  8. [8] J. Chvalina and J. Moucka, Hypergroups determined by orderings with regular endomorphism monoids, Ital. J. Pure Appl. Math., 16 (2004), 227-242.
  9. [9] I. Cristea and S. Jancic-Rašovic, Composition hyperrings, An. Stiint. Univ. “Ovidius” Constanta Ser. Mat., 21(2) (2013), 81-94.10.2478/auom-2013-0024
  10. [10] B. Davvaz, Isomorphism theorems of hyperrings, Indian J. Pure Appl. Math., 35(3) (2004), 321-331.
  11. [11] B. Davvaz, P. Corsini and T. Changphas, Relationship between ordered semihypergroups and ordered semigroups by using pseuoorders, European J. Combinatorics, 44 (2015), 208-217.10.1016/j.ejc.2014.08.006
  12. [12] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, USA, 2007.
  13. [13] D. Heidari and B. Davvaz, On ordered hyperstructures, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 73(2) (2011), 85-96.
  14. [14] S. Hoskova, Quasi-order hypergroups determined by T -hypergroups, Ratio Mathematica, 32 (2017), 37-44.
  15. [15] S. Hoskova, Upper order hypergroups as a reflective subcategory of subquasiorder hypergroups, Ital. J. Pure Appl. Math., 20 (2006), 215-222.
  16. [16] N. Kehayopulu and M. Tsingelis, Pseudoorder in ordered semigroups, Semigroup Forum, 50 (1995), 389-392.10.1007/BF02573534
  17. [17] M. Krasner, A class of hyperrings and hyperfields, International J. Math. and Math. Sci., 6 (1983), 307-312.10.1155/S0161171283000265
  18. [18] S. Mirvakili and B. Davvaz, Applications of the α*-relation to Krasner hyperrings, J. Algebra, 362 (2012), 145-156.10.1016/j.jalgebra.2012.04.011
  19. [19] S. Mirvakili and B. Davvaz, Relations on Krasner (m, n) -hyperrings, European J. Combin., 31 (2010), 790-802.10.1016/j.ejc.2009.07.006
  20. [20] J. Mittas, Hypergroups canoniques, Mathematica Balkanica, 2 (1972), 165-179.
  21. [21] J. Mittas, Sur les hyperanneaux et les hypercorps, Math. Balkanica, 3 (1973), 368-382.
  22. [22] T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, Algebraic hyperstructures and applications (Xanthi, 1990), 203–211, World Sci. Publ., Teaneck, NJ, 1991.10.1142/9789814539555
  23. [23] T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press, Inc 115 Palm Harber, USA, 1994.
DOI: https://doi.org/10.2478/auom-2019-0010 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 193 - 210
Accepted on: May 29, 2018
Published on: Mar 2, 2019
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Saber Omidi, Bijan Davvaz, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.