Have a personal or library account? Click to login
Type I+ Helicoidal Surfaces with Prescribed Weighted Mean or Gaussian Curvature in Minkowski Space with Density Cover

Type I+ Helicoidal Surfaces with Prescribed Weighted Mean or Gaussian Curvature in Minkowski Space with Density

Open Access
|Dec 2018

References

  1. [1] C. Baikoussis, T. Koufogiorgos, Helicoidal surfaces with prescribed mean or Gaussian curvature, Journal of Geometry 63.(1) (1998) 25-29.10.1007/BF01221235
  2. [2] C. C. Beneki, G. Kaimakamis, B. J. Papantoniou, Helicoidal surfaces in three-dimensional Minkowski space, Journal of Mathematical Analysis and Applications 275.(2) (2002) 586-614.10.1016/S0022-247X(02)00269-X
  3. [3] I. Corwin, N. Hoffman, S. Hurder, V. eum, Y. Xu, Differential geometry of manifolds with density. Rose-Hulman Undergrad. Math. J. 7 (2006) 1-15.
  4. [4] M. P. Do Carmo, M. Dajczer, Helicoidal surfaces with constant mean curvature, Tohoku Mathematical Journal, Second Series 34.(3) (1982) 425-435.10.2748/tmj/1178229204
  5. [5] C. H. Delaunay, Sur la surface de révolution dont la courbure moyenne est constante, Journal de mathématiques pures et appliquées (1841) 309-314.
  6. [6] D. T. Hıeu, N. M. Hoang, Ruled minimal surfaces in ℝ3 with density ez, Pacific Journal of Mathematics 243.(2) (2009) 277-285.10.2140/pjm.2009.243.277
  7. [7] F. Ji, Z. H. Hou, A kind of helicoidal surfaces in 3-dimensional Minkowski space, Journal of mathematical analysis and applications 304.(2) (2005) 632-643.10.1016/j.jmaa.2004.09.065
  8. [8] F. Ji, Z. H. Hou, Helicoidal surfaces under the cubic screw motion in Minkowski 3-space, Journal of mathematical analysis and applications 318.(2) (2006) 634-647.10.1016/j.jmaa.2005.06.032
  9. [9] F. Morgan, Geometric measure theory: a beginner’s guide. Academic press (2016).10.1016/B978-0-12-804489-6.50001-X
  10. [10] F. Morgan, Manifolds with density, Notices of the AMS 52.(8) (2005) 853-858.
  11. [11] F. Morgan, Manifolds with density and Perelman’s Proof of the Poincaré conjecture, American Mathematical Monthly 116.(2) (2009) 134-142.10.1080/00029890.2009.11920920
  12. [12] F. Morgan, Myers’ theorem with density, Kodai Mathematical Journal 29.(3) (2006) 455-461.10.2996/kmj/1162478772
  13. [13] P. Rayón, M. Gromov, Isoperimetry of waists and concentration of maps, Geometric and functional analysis 13.(1) (2003) 178-215.10.1007/s000390300004
  14. [14] C. Rosales, A. Canete, V, Bayle, F. Morgan, On the isoperimetric problem in Euclidean space with density, Calculus of Variations and Partial Differential Equations 31.(1) (2008) 27-46.10.1007/s00526-007-0104-y
  15. [15] D. W. Yoon, D. S. Kim, Y. H. Kim, J. W. Lee, Constructions of Helicoidal Surfaces in Euclidean Space with Density, Symmetry 9.(9) (2017) 173-182.10.3390/sym9090173
DOI: https://doi.org/10.2478/auom-2018-0035 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 99 - 108
Submitted on: Dec 2, 2017
Accepted on: Jan 31, 2018
Published on: Dec 31, 2018
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2018 Önder Gökmen Yıldız, Selman Hızal, Mahmut Akyiğit, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.