Have a personal or library account? Click to login
On the ability of the Generalized Continuum Transport Model to properly capture dispersion Cover

On the ability of the Generalized Continuum Transport Model to properly capture dispersion

Open Access
|Nov 2018

References

  1. [1] G. Taylor, Diffusion and mass transport in tubes, Proc. Phys. Soc. B 67(857), 1954.10.1088/0370-1301/67/12/301
  2. [2] R. Aris, On the dispersion of a solute in a fluid owing through a tube, Proc. Roy Soc. London A 235:67, 1956.10.1098/rspa.1956.0065
  3. [3] J. Glimm, W.B. Lindquist, F. Pereira, Q. Zhang, A theory of macrodispersion for the scale up problem, Transp. Porous Med. 13: 97, 1993.10.1007/BF00613272
  4. [4] N. Suciu, Diffusion in random velocity fields with applications to contaminant transport in groundwater, Adv. Water Resour., 69: 114-133, 2014.10.1016/j.advwatres.2014.04.002
  5. [5] N. Suciu, S. Attinger, F. A. Radu, C. Vamos, J. Vanderborght, H. Vereecken and P. Knabner, Solute transport in aquifers with evolving scale heterogeneity, An. St. Univ. Ovidius Constanta, 23(3): 167-186, 2015.10.1515/auom-2015-0054
  6. [6] N. Suciu, F.A. Radu, S. Attinger, L. Schueler and P. Knabner, A Fokker- Planck approach for probability distributions of species concentrations transported in heterogeneous media, J. Comput. and Appl. Math., 289 (1): 114-133, 2015.10.1016/j.cam.2015.01.030
  7. [7] J.P. Gwo, P.M. Jardine, G.V. Wilson, G.T. Yeh: Using a multiregion model to study the effects of advective and diffusive mass transfer on local physical nonequilibrium and solute mobility in a structured soil, Wat. Resour. Res., 32: 561, 1996.10.1029/95WR03397
  8. [8] B. Berkowitz, A. Cortis, M. Dentz, H. Scher, Modeling non-Fickian trans- port in geological formations as a continuous time random walk, Rev. Geophys., 44: RG2003, 2006.10.1029/2005RG000178
  9. [9] L. Vasilyev, A. Raoof, J.M. Nordbotten, Effect of Mean Network Coordination Number on Dispersivity Characteristics, Transp. Porous Med. 95: 447-463, 2012.10.1007/s11242-012-0054-5
  10. [10] L. Vasilyev, J.M. Nordbotten, F.A. Radu and K. Kumar, On the proper- ties of the parameter space of generalized continuum transport model for description of fluid ow in porous networks, submitted, 2017.10.1007/s11242-017-0905-1
  11. [11] J.S. Aronofsky, J.P. Heller: A diffusion model to explain mixing of owing miscible fluids in porous media, Trans. Am. Inst. Min. Metall. Pet. Eng., 210: 345{349, 1957.10.2118/860-G
  12. [12] A.E. Scheidegger: An evaluation of the accuracy of the diffusivity equation for describing miscible displacement in porous media, Proc. Theory Fluid Flow Porous Media Conf. 2nd: 101-116, 1959.
  13. [13] C. Kennedy, W. Lennox: A stochastic interpretation of the tailing effect in solute transport, Stochastic Environmental Research and Risk Assesment, 15: 325{340, 2001.10.1007/s004770100076
  14. [14] D.K. Jaiswal, A. Kumar, R.R. Yadav, Analytical Solution to the One- Dimensional Advection-Diffusion Equation with Temporally Dependent Coeffcients, Journal of Water Resource and Protection, 3: 76{84, 2011.10.4236/jwarp.2011.31009
  15. [15] N. Suciu, C. Vamos, F.A. Radu, H. Vereecken, P. Knabner, Persistent memory of diffusing particles, Phys. Rev. E 80:061134, 2014.10.1103/PhysRevE.80.061134
  16. [16] C. Vamos, N. Suciu, H. Vereecken, Generalized random walk algorithm for the numerical modeling of complex diffusion process, J. Comput. Phys. 186(2): 527{44, 2003.10.1016/S0021-9991(03)00073-1
  17. [17] N. Suciu, C. Vamos, H. Vereecken, P. Knabner, Global random walk simulations for sensitivity and uncertainty analysis of passive transport models, Annals of the Academy of Romanian Scientists, Series on Mathematics and its Applications 3 (1), 2011.
  18. [18] B. Berkowitz, J. Klafter, R. Metzler, H. Scher, Physical pictures of transport in heterogeneous media: Advection dispersion, random-walk, and fractional derivative formulations, Water Resour. Res., 38(10): 1191, 2002.10.1029/2001WR001030
  19. [19] T. Vogel, H.H. Gerke, R. Zhang, M.Th. van Genuchten, Modeling ow and transport in a two-dimensional dual-permeability system with spatially variable hydraulic properties, Journal of Hydrology, 238: 78-89, 2000.10.1016/S0022-1694(00)00327-9
  20. [20] J.M. Nordbotten, L. Vasilyev, On the relationship between multiple porosity models and continuous time random walk, XVIII International Conference on Water Resources CMWR2010, 2010.
  21. [21] M.Th. van Genuchten, W.J. Alves, Analyitical slutions of the one- dimensional convective-dispersive solute transport equation. U.S. Department of Agriculture, Technical Bulletin, No. 1661, 1982.
  22. [22] V.M Kenkre, E.W. Montroll, M.F. Shlesinger, Generalized master equations for continuous-time random walks, J. Stat. Phys., 9(1): 45-50, 1973.10.1007/BF01016796
  23. [23] J.A. Nelder, R. Mead, A simplex method for function optimization. Com- put. J. 7: 308{313, 1965.10.1093/comjnl/7.4.308
  24. [24] M.F. Shlesinger, Asymptotic solutions of continuous-time random walks, J. Stat. Phys., 10(5): 421-434, 1974.10.1007/BF01008803
  25. [25] M. Dentz, A. Cortis, H. Scher, B. Berkowitz, Time behavior of solute transport in heterogeneous media: Transition from anomalous to normal transport, Adv. Water Resour., 27: 155-173, 2004.10.1016/j.advwatres.2003.11.002
  26. [26] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, Mineola, N.Y., 1970.
  27. [27] F.A. Radu, N. Suciu, J. Hoffmann, A. Vogel, O. Kolditz, C-H. Park and S. Attinger, Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: a comparative study. Adv. Water Resour., 34 (1): 47-61, 2011.10.1016/j.advwatres.2010.09.012
DOI: https://doi.org/10.2478/auom-2018-0029 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 285 - 299
Submitted on: Dec 1, 2016
Accepted on: May 1, 2017
Published on: Nov 22, 2018
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2018 Leonid Vasilyev, Florin Adrian Radu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.