Have a personal or library account? Click to login
MHD convection ow in a constricted channel Cover

References

  1. [1] J.A. Kolodziej and J.K. Grabski, Application of the method of fundamental solutions and the radial basis functions for viscous laminar ow in wavy channel, Engineering Analysis with Boundary Elements, 57, 58-65 (2015).10.1016/j.enganabound.2014.10.021
  2. [2] A. Al-Amiri, K. Khanafer, J. Bull and I. Pop, Effect of sinusoidal wavy &bottom surface on mixed convection heat transfer in a lid-driven cavity, International Journal of Heat and Mass Transfer, 50, 1771-1780 (2007).10.1016/j.ijheatmasstransfer.2006.10.008
  3. [3] S. Cetindag and M.K. Aktas, Numerical simulation of Rayleigh Benard convection in an enclosure: Effect of vibrating, In Proc. the World Congress on Engineering WCE 2014, July 2-4, London, UK.
  4. [4] R. Nasrin, and S. Parvin, Hydromagnetic effect on mixed convection in a lid-driven cavity with sinusoidal corrugated bottom surface, International Communications in Heat and Mass Transfer, 38, 781-789 (2011).10.1016/j.icheatmasstransfer.2011.03.002
  5. [5] C.C. Wang and C.K. Chen, Mixed convection boundary layer ow on in- clined wavy plates including the magnetic field effect, International Journal of Thermal Sciences, 44, 577-586 (2005).10.1016/j.ijthermalsci.2005.02.001
  6. [6] M.J. Colaço, G.S. Dulikravich, and H.R.B. Orlande, Magnetohydrodynamic simulations using radial basis functions, International Journal of Heat and Mass Transfer, 52, 5932-5939 (2009).10.1016/j.ijheatmasstransfer.2009.08.009
  7. [7] D.C. Lo, High-resolution simulations of magnetohyrdodynamic free convection in an enclosure with a transverse magnetic field using a velocity- vorticity formulation, International Journal Communications in Heat and Mass Transfer, 37, 514-523 (2010).10.1016/j.icheatmasstransfer.2009.12.013
  8. [8] R. Mößner and U. Müller, A numerical investigation of three-dimensional magnetoconvection in rectangular cavities, International Journal of Heat and Mass Transfer, 42, 1111-1121 (1999).10.1016/S0017-9310(98)00115-X
  9. [9] M. Gürbüz and M. Tezer-Sezgin, MHD Stokes flow in a smoothly constricted rectangular enclosure, Proceedings of Advances in Boundary Element & Meshless Techniques XVII, BETEQ 2016, Ankara, Turkey, 73-78 (2016).
  10. [10] U. Müller, and L. Bühler, Magnetouiddynamics in channels and containers, Berlin, New York, 2001.10.1007/978-3-662-04405-6
  11. [11] C.S. Chen, C.M. Fan, P.H. Wen, The method of approximate particular solutions for solving certain partial differential equations, Numerical Methods for Partial Differential Equations, 28, 506-522 (2012).10.1002/num.20631
  12. [12] M. Gürbüz and M. Tezer-Sezgin, MHD Stokes flow in lid-driven cavity and backward-facing step channel, European Journal of Computational Mechanics, 24, 279-301 (2015).10.1080/17797179.2016.1181031
  13. [13] N.L. Gajbhiye and V. Eswaran, Numerical simulation of MHD ow and heat transfer in a rectangular and smoothly constricted enclosure, International Journal of Heat and Mass Transfer, 83, 441-449 (2015).10.1016/j.ijheatmasstransfer.2014.11.091
DOI: https://doi.org/10.2478/auom-2018-0028 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 267 - 283
Submitted on: Nov 1, 2016
Accepted on: Jun 1, 2017
Published on: Nov 22, 2018
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2018 M. Tezer-Sezgin, Merve Gürbüz, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.