Have a personal or library account? Click to login
Convective Flow of Blood in Square and Circular Cavities Cover
By: P. Senel and  M. Tezer-Sezgin  
Open Access
|Nov 2018

References

  1. [1] Higashi T, Yamagishi A, Takeuchi T, Kawaguchi N, Sagawa S, Onishi S, and Date M. Orientation of erythrocytes in a strong magnetic field. Blood, 82 (4):1328-1334, 1993.10.1182/blood.V82.4.1328.bloodjournal8241328
  2. [2] Tzirtzilakis EE, Sakalis VD, Kafoussias NG, and Hatzikonstantinou PM. Biomagnetic fluid ow in a 3D rectangular duct. International Journal for Numerical Methods in Fluids, 44:1279-1298, 2004.10.1002/fld.618
  3. [3] Tzirtzilakis EE. A mathematical model for blood ow in a magnetic field. Physics of Fluids, 17:077103:1-15, 2005.10.1063/1.1978807
  4. [4] Kenjeres S. Numerical analysis of blood flow in realistic arteries subjected to strong non-uniform magnetic fields. International Journal for Heat and Fluid Flow, 29:752-764, 2008.10.1016/j.ijheatfluidflow.2008.02.014
  5. [5] Khashan SA, Elnajjar E, and Haik Y. Numerical simulation of the continuous biomagnetic separation in a two-dimensional channel. International Journal for Multiphase Flow, 37:947-955, 2011.10.1016/j.ijmultiphaseflow.2011.05.004
  6. [6] Tzirakis K, Papaharilaou Y, Giordano D, and Ekaterinaris J. Numerical investigation of biomagnetic fluids in circular ducts. International Journal for Numerical Methods in Biomedical Engineering, 30:29-{317, 2014.10.1002/cnm.260324123947
  7. [7] Kabeel AE, El-Said EMS, and Dafea SA. A review of magnetic field effects on flow and heat transfer in liquids: Present status and future potential for studies and applications. Reneweble and Sustainable Reviews, 45:830{ 837, 2015.10.1016/j.rser.2015.02.029
  8. [8] Tzirtzilakis EE and Kafoussias NG. Biomagnetic fluid flow over a stretching sheet with non linear temperature dependent magnetization. ZAMP, 54:551-565, 2003.10.1007/s00033-003-1100-5
  9. [9] Loukopoulos VC and Tzirtzilakis EE. Biomagnetic channel flow in spatially varying magnetic field. International Journal of Engineering Science, 42:571-590, 2004.10.1016/j.ijengsci.2003.07.007
  10. [10] Morega A and Faur S. A FEM analysis of biomagnetic fluid flow in a rectangular duct under the inuence of a magnetic field. In Proceedings of the Third Workshop on Mathematical Modelling of Environmental and Life Sciences Problems, pages 205-218, 2004.
  11. [11] Alimohamadi H, Dehghan-Niri V, and Ashjaee M. Improvement of heat transfer performances of biomagnetic flow in a rectangular duct under different types of magnetic fields. International Journal of Technology Enhancements and Emerging Engineering Research, 2:44-48, 2014.
  12. [12] Idris NA, Amin N, and Rahmat H. E effect of gravitational acceleration on unsteady biomagnetic fluid ow. Applied and Computational Mathematics, 3(6):285{294, 2014.10.11648/j.acm.20140306.11
  13. [13] Partridge PW, Brebbia CA, and Wrobel LC. The Dual Reciprocity Boundary Element Method. Computational Mechanics Publications, Sauthampton, Boston, 1992.10.1007/978-94-011-3690-7
  14. [14] Senel P and Tezer-Sezgin M. DRBEM solutions of Stokes and Navier- Stokes equations in cavities under point source magnetic field. Engineering Analysis with Boundary Elements, 64:158{175, 2016.10.1016/j.enganabound.2015.12.007
  15. [15] Tezer-Sezgin M, Bozkaya C, and Turk O. BEM and FEM based numerical simulations for biomagnetic fluid flow. Engineering Analysis with Boundary Elements, 37:1127{1135, 2013.10.1016/j.enganabound.2013.04.015
  16. [16] Senel P and Tezer-Sezgin M. DRBEM solution of biomagnetic fluid flow under a point source magnetic field. In Proceedings of the 16th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2016), pages 1172-1183, 2016.
  17. [17] Lienhard IV JH and Lienhard V JH. A Heat Transfer Textbook. Cam- bridge, Massachussetts, 2000.
  18. [18] Fletcher CAJ. Computational Techniques for Fluid Dynamics 2. Springer, Berlin, 1991.10.1007/978-3-642-58239-4
  19. [19] Plansey R and Collin RE. Principles and Applications of Electromagnetic Fields. Mc Graw-Hill, NewYork, 1961.
  20. [20] Lo DC, Young DL, and Tsai CC. High resolution of 2D natural convection in a cavity by the DQ method. Journal of Computational and Applied Mathematics, 203(1):219{236, 2007.10.1016/j.cam.2006.03.021
DOI: https://doi.org/10.2478/auom-2018-0026 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 209 - 230
Submitted on: Nov 1, 2016
Accepted on: Jun 1, 2017
Published on: Nov 22, 2018
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2018 P. Senel, M. Tezer-Sezgin, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.