Have a personal or library account? Click to login
Riemann Problem for Shallow Water Equation with Vegetation Cover

References

  1. [1] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems," Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.10.1093/oso/9780198502456.001.0001
  2. [2] S. Bianchini, A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. of Math., 161(2005), 223{342.10.4007/annals.2005.161.223
  3. [3] F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, Frontiers in Mathematics, Birkhauser Verlag, Basel, 2004.10.1007/b93802
  4. [4] C. M. Dafermos, Solution of the Riemann problem for a class of hyper- bolic systems of conservation laws by the viscosity method, Arch. Rational Mech. Anal., 52(1973), 1{9.10.1007/BF00249087
  5. [5] G. Dal Maso, P.G. LeFloch, F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74(1995), 483{548.
  6. [6] R. DiPerna, Measure-valued solutions of conservation laws, Arch. Rat. Mech. Anal. 88(1985), 223{270.10.1007/BF00752112
  7. [7] Thierry Gallouet, Jean-Marc Herard, Nicolas Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography, Computers&Fluids, 32(2003) 479{513.10.1016/S0045-7930(02)00011-7
  8. [8] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Commun. Pure. Appl. Math. 18(1965), 697{715.10.1002/cpa.3160180408
  9. [9] P.D. Lax, Hyperbolic systems of conservation laws. II., Commun. Pure Appl. Math. 10(1957), 537-566.10.1002/cpa.3160100406
  10. [10] P.G. LeFloch, Mai Duc Thanh, Rieamann problem for the shallow water equations with discountinous topography,, Commun. Pure Appl. Math. 5(4)(2007), 865{885.10.4310/CMS.2007.v5.n4.a7
  11. [11] P.G. LeFloch, Hyperbolic systems of conservation laws: the theory of classical and nonclassical shock waves, Lectures in Mathematics, ETH Zuerich, Birkhauser, 2002.
  12. [12] J.A. Smoller, Shock Waves and Reaction-Diffusion Equations, (Second Edition). New York: Springer, 1994.10.1007/978-1-4612-0873-0
  13. [13] E.F. Toro, Riemann solvers and numerical methods for fluid dynamics, Berlin: Springer, 1997.10.1007/978-3-662-03490-3
  14. [14] A.I. Volpert, The spaces BV and quasilinear equations, Math. USSR Sbornik, 73(1967), 255-302.
DOI: https://doi.org/10.2478/auom-2018-0023 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 145 - 173
Submitted on: Dec 1, 2016
Accepted on: Jun 1, 2017
Published on: Nov 22, 2018
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2018 Stelian Ion, Dorin Marinescu, Stefan-Gicu Cruceanu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.