Have a personal or library account? Click to login
Finite groups in which normality, permutability or Sylow permutability is transitive Cover

Finite groups in which normality, permutability or Sylow permutability is transitive

Open Access
|Dec 2015

References

  1. [1] Alejandre M.J., Ballester-Bolinches A., Pedraza-Aguilera M.C., Finite soluble groups with permutable subnormal subgroups, J. Algebra 240 (2001), 705–722.10.1006/jabr.2001.8732
  2. [2] Ali A., Groups of p-length one for all primes p, Comm. Alg. 26 (9) (1998), 2895–2904.10.1080/00927879808826315
  3. [3] Ballester-Bolinches A., Esteban-Romero R., On finite T-groups, J. Aust. Math. Soc. 75 (2003), 181–191.10.1017/S1446788700003712
  4. [4] Ballester-Bolinches A., Esteban-Romero R., Sylow permutable subnormal subgroups of finite groups, J. Algebra 251 (2002), 727–738.10.1006/jabr.2001.9138
  5. [5] Ballester-Bolinches A., Esteban-Romero R., Asaad M., Products of finite groups, Walter de Gruyter GmbH& Co, KG, Berlin/New York, 2010.10.1515/9783110220612
  6. [6] Bauman S., The intersection map of subgroups, Arch. Math. 25 (1974), 337–340.10.1007/BF01238683
  7. [7] Beidleman J.C., Brewster B., Robinson D.J.S., Criteria for permutability to be transitive in finite groups, J. Algebra 222 (1999), 400–412.10.1006/jabr.1998.7964
  8. [8] Beidleman J.C., Heineken H., Groups with subnormal normalizers of sub-normal subgroups, Bull. Aust. Math. 86 (2012), 11–21.10.1017/S0004972710032855
  9. [9] Berkovich Y., Subgroups with the character restriction property and related topics, Houston J. Math. 24 (1998), 631–638.
  10. [10] Bryce R.A., Cossey J., The Wielandt subgroup of a finite soluble group, J. London Math. Soc. (2)40 (1989), 244–256.10.1112/jlms/s2-40.2.244
  11. [11] Grätzer G., Universal algebra, Springer, New York, 2008.10.1007/978-0-387-77487-9
  12. [12] Huppert B., Endliche Gruppen I, Springer–Verlag, Berlin-New York, 1967.10.1007/978-3-642-64981-3
  13. [13] Kaplan G., On finite T-groups and the Wielandt subgroup, J. Group Theory 14 (2011), 855–863.10.1515/JGT.2011.082
  14. [14] Li S., On minimal non-PE-groups, J. Pure Appl. Algebra 132 (1998), 149–158.10.1016/S0022-4049(97)00106-0
  15. [15] Li Y., Finite groups with NE-subgroups, J. Group Theory 9 (2006), 49–58.
  16. [16] Malinowska I.A., Finite groups with NR-subgroups or their generalizations, J. Group Theory 15, no. 5 (2012), 687-707.
  17. [17] Malinowska I.A. Finite groups with some NR-subgroups or ℋ-subgroups, Monatsh. Math. 171 (2013), 205–216.10.1007/s00605-012-0427-4
  18. [18] Robinson D.J.S., A Course in the Theory of Groups, Springer–Verlag, New York, 1996.
  19. [19] Wetherell C.J.T., Subnormal structure of finite soluble groups, (Ph.D. thesis) Australian National University, ACT, Australia, http://thesis.anu.edu.au. (2001).
  20. [20] Wielandt H., Über den Normalizer der Subnormale Untergruppen, Math. Z. 69 (1958), 463-465.10.1007/BF01187422
DOI: https://doi.org/10.2478/auom-2014-0055 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 137 - 146
Submitted on: Apr 10, 2013
Accepted on: Oct 14, 2013
Published on: Dec 22, 2015
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2015 Izabela Agata Malinowska, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.