Have a personal or library account? Click to login
An introduction to the theory of algebraic multi-hyperring spaces Cover
By: Kostaq Hila and  Bijan Davvaz  
Open Access
|Dec 2015

References

  1. [1] P. Corsini, Prolegomena of hypergroup theory, Second edition, Aviani editori, 1993.
  2. [2] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, vol 5 of Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, The Netherlands 2003.10.1007/978-1-4757-3714-1
  3. [3] B. Davvaz, A. Salasi, A realization of hyperrings, Commun. Algebra, 34(12)(2006), 4389-4400.10.1080/00927870600938316
  4. [4] B. Davvaz, Isomorphism theorems of hyperrings, Indian J. Pure Appl. Math., 35 (2004), no. 3, 321-331.
  5. [5] B. Davvaz and V. Leoreanu-Fotea, Hyperring theory and applications, International Academic Press, Palm Harbor, Fla, USA, 2007.
  6. [6] B. Davvaz, A. Dehghan Nezhad, M.M. Heidari, Inheritance examples of algebraic hyperstructures, Inform. Sci., 224 (2013), 180-187.10.1016/j.ins.2012.10.023
  7. [7] B. Davvaz, A. Dehghan Nezhad and A. Benvidi, Chemical hyperalgebra: Dismutation reactions, MATCH Commun. Math. Comput. Chem., 67 (2012), 55-63.
  8. [8] B. Davvaz, A. Dehghan Nezad and A. Benvidi, Chain reactions as experimental examples of ternary algebraic hyperstructures, MATCH Commun. Math. Comput. Chem., 65(2) (2011), 491-499.
  9. [9] B. Davvaz and A. Dehghan Nezhad, Dismutation reactions as experimental verifications of ternary algebraic hyperstructures, MATCH Commun. Math. Comput. Chem., 68 (2012), 551-559.
  10. [10] B. Davvaz and T. Vougiouklis, Commutative rings obtained from hyperrings (Hv-rings) with α*-relations, Commun. Algebra, 35 (2007), 3307-3320.10.1080/00927870701410629
  11. [11] A. Dehghan Nezhad, S.M. Moosavi Nejad, M. Nadjafikhah and B. Davvaz, A physical example of algebraic hyperstructures: Leptons, Indian J. Physics, 86(11) (2012), 1027-1032.10.1007/s12648-012-0151-x
  12. [12] M. Ghadiri, B. Davvaz and R. Nekouian, Hv-Semigroup structure on F2-offspring of a gene pool, Int. J. Biomath., 5(4) (2012) 1250011 (13 pages).10.1142/S1793524511001520
  13. [13] M. Krasner, A class of hyperrings and hyperfields, Internat. J. Math. Math. Sci. 6 (1983), 307-311.10.1155/S0161171283000265
  14. [14] J. Mittas, Hypergroupes canoniques, Math. Balkanica, 2 (1972), 165-179.
  15. [15] L.F. Mao, Smarandache multi-space theory, Hexis, Phoenix, AZ USA 2006.
  16. [16] F. Marty, Sur une generalization de la notion de group, 8th Congres Math. Scandinaves, Stockholm, (1934), 45-49.
  17. [17] F. Smarandache, A Unifying Field in Logics, Neutrosopy: Neturosophic Probability, Set, and Logic, American research Press, Rehoboth, 1999.
  18. [18] F. Smarandache, Mixed noneuclidean geometries, Stud. Cercet. Stiint. Ser. Mat. Univ. Bacau 8 (1998) 127–154.
  19. [19] T. Vougiouklis, Hyperstructures and their Representations, Hadronic Press, Florida, USA, 1994.
  20. [20] T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, in Algebraic Hyperstructures and Applications, pp. 203-211, World Scientific Publishing, Teaneck, NJ, USA, 1991.10.1142/9789814539555
DOI: https://doi.org/10.2478/auom-2014-0050 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 59 - 72
Submitted on: Apr 12, 2013
Accepted on: Oct 14, 2013
Published on: Dec 22, 2015
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2015 Kostaq Hila, Bijan Davvaz, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.