Have a personal or library account? Click to login
Numerical Decomposition of Affine Algebraic Varieties Cover

References

  1. [1] E. L. Allgower and K. Georg. Numerical Continuation Methods, an Introduction, Springer Series in Comput. Math, Vol. 13, Springer-Veralg, Berlin, Heidelberg, New Yourk, 1990.10.1007/978-3-642-61257-2
  2. [2] E. Arbarello, M. Coranalba, P.A. Griffths and J. Harris. Geometry of Algebraic Curves, volume I. Volume 267 of Grundlehren Math. Wiss., Springer Verlag, New York, 1985.
  3. [3] D. J. Bates, J. D. Hauenstein, A. J. Sommese and C. W. Wampler. Bertini : Software for Numerical Algebraic Geometry. http://www.nd.edu/~sommese/bertini/.
  4. [4] S. C. Billups, A. P. Morgan and L. T. Watson. Algorithm 652. Hompack: A Suite codes for Globally Convergent Homotopy Algorithms. ACM Transactions on Mathematical Software, Vol.13. No. 3, Septemper 1987, Pages 281-310.10.1145/29380.214343
  5. [5] G. Björck and R. Fröberg. A faster way to count the solutions of inhomogeneous systems of algebraic equations, with applications to cyclic n-roots. J. Symbolic Computation, 12:329-336, 1991.10.1016/S0747-7171(08)80153-8
  6. [6] G. Björck. Functions of modulus one on Zn whose Fourier transforms have constant modulus, and cyclic n-roots. In: J. S. Byrnes and J. F. Byrnes, Editors, Recent Advances in Fourier Analysis and its Applications 315, NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci., Kluwer (1989), pp. 131-140.10.1007/978-94-009-0665-5_10
  7. [7] R. M. Corless, A. Galligo, I. S. Kotsireas and S. M. Watt. A Geometric-Numeric Algorithm for Absolute Factorization of Multivariate Polynomials. ISSAC 2002, July 7-10, 2002, Lille, France.10.1145/780506.780512
  8. [8] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann. Singular 3-1-1 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2010).
  9. [9] G. Fischer. Complex Alalytic Geometry, Lecture Notes in Mathematics 538 (1976).10.1007/BFb0080338
  10. [10] W. Fulton. Intersection Theory, volume (3) 2 of Ergeb. Math. Grenzgeb. Springer Verlag, Berlin, 1984.10.1007/978-3-662-02421-8_18
  11. [11] G.-M. Greuel and G. Pfister. A SingularIntroduction to Commutative Algebra. Second edition, Springer (2007).
  12. [12] A. P. Morgan and L. T. Watson. A globally convergent parallel algorithm for zeros of polynomial systems. Nonlinear Anal. (1989), 13(11), 1339–1350.10.1016/0362-546X(89)90017-5
  13. [13] A. P. Morgan and A. J. Sommese. Computing all solutions to polynomial systems using homotopy continuation. Appl. Math. Comput., 115-138. Errata: Appl. Math. Comput. 51 (1992), p. 209. Nonlinear Anal.10.1016/0096-3003(92)90075-C
  14. [14] A. J. Sommese, J. Verschelde and C. W. Wampler. Symmetric functions applied to decomposing solution sets of polynomial systems. Vol. 40, No. 6, pp. 2026-2046. 2002 Society for Industrial and Applied Mathematics.10.1137/S0036142901397101
  15. [15] A. J. Sommese and J. Verschelde. Numerical homotopies to compute generic points on positive dimensional algebraic sets. J. of Complexity 16(3):572-602, (2000).10.1006/jcom.2000.0554
  16. [16] A. J. Sommese, C. W. Wampler and J. D. Hauenstein. Regenerative cascade homotopies for solving polynomial systems. Applied Mathematics and Computation 218(4): 1240-1246 (2011)10.1016/j.amc.2011.06.004
  17. [17] A. J. Sommese, J. Verschelde and C. W. Wampler. (2002a). A method for tracking singular paths with application to the numerical decomposition. In algebraic geometry (pp. 329-345). Berlin: de Gruyter.10.1515/9783110198072.329
  18. [18] A. J. Sommese, J. Verschelde and C. W. Wampler. (2001a). Numerical decomposition of solution sets of polynomial systems into irreducible components. SIAM J. Number. Anal., 38(6), 2022-2046. NID10.1137/S0036142900372549
  19. [19] A. J. Sommese, J. Verschelde and C. W. Wampler. (2003). Numerical irreducible decomposition using PHCpack. In algebra, geometry, and software systems (pp. 109-129). Berlin: Springer.
  20. [20] A. J. Sommese, J. Verschelde and C.W. Wampler. Numerical decomposition of the solution sets of polynomial systems into irreducible components. SIAM J. Numer. Anal. 38(6):2022-2046, 2001.10.1137/S0036142900372549
  21. [21] A. J. Sommese, J. Verschelde and C. W. Wampler. Numerical irreducible decomposition using projections from points on components. In Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering, volume 286 of contemporary Mathematics, edited by E. L. Green, S. Hosten, R. C. Laubenbacher and V. Powers, pages 27-51. AMS 2001.10.1090/conm/286/04753
  22. [22] A. J. Sommese, J. Verschelde and C. W. Wampler. Using monodromy to decompose solution sets of polynomial systems into irreducible components. In Application of Algebraic Geometry to Coding Theory, Physics and Computation, edited by C. Ciliberto, F. Hirzebruch, R. Miranda and M. Teicher. Proceedings of a NATO Conference, February 25-March 1, 2001, Eilat, Israel. Pages 297-315, Kluwer Academic Publishers.10.1007/978-94-010-1011-5_16
  23. [23] A. J. Sommese and C. W. Wampler. The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. ISBN 981-256-184-6. Word Scientific Publishing Co. Plte. Ltd. 2005.10.1142/5763
  24. [24] A. J. Sommese and C. W. Wampler. Numerical algebraic geometry. In the mathematics of numerical analysis. (Park City, UT, 1995), Vol. 32 of lectures in Appl. Math. (pp. 749-763). Providence, RI: Amer. Math. Soc.
  25. [25] J. Verschelde(1996). Homotopy continuation methods for solving polynomial systems. PhD thesis, Katholihe Universiteit Leuven.
  26. [26] J. Verschelde(1999). Algorithm 795: PHCpack:Ageneral-purpose solver for polynomial systems by homotopy continuation. ACM Trans. on Math. Software, 25(2), 251-276.10.1145/317275.317286
DOI: https://doi.org/10.2478/auom-2014-0042 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 193 - 216
Submitted on: Sep 1, 2012
Accepted on: Feb 1, 2013
Published on: Oct 20, 2015
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2015 Shawki AL Rashed, Gerhard Pfister, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.