Have a personal or library account? Click to login
A multivalued version of Krasnoselskii’s theorem in generalized Banach spaces Cover

A multivalued version of Krasnoselskii’s theorem in generalized Banach spaces

By: Ioan-Radu Petre  
Open Access
|Oct 2015

References

  1. [1] G. Allaire and S.M. Kaber, Numerical Linear Algebra, Texts in Applied Mathematics, 55(2008), Springer, New York.10.1007/978-0-387-68918-0
  2. [2] A. Bucur, L. Guran, A. Petruşel, Fixed points for multivalued operators on a set endowed with vector-valued metrics and applications, Fixed Point Theory, 10(2009), No. 1, 19-34.
  3. [3] T.A. Burton, A fixed-point theorem of Krasnoselskii, Appl. Math. Letters, 11(1998), 85-88.10.1016/S0893-9659(97)00138-9
  4. [4] S. Carl, S. Heikkila, Fixed Point Theory in Ordered Sets and Applications, Springer, New York, 2011.10.1007/978-1-4419-7585-0
  5. [5] L. Collatz, Some applications of functional analysis to analysis, particularly to nonlinear integral equations, Nonlinear Functional Anal. and Appl. (Proc. Advanced Sem., Math. Res. Center, Univ. of Wisconsin, Madison, Wis, 1970), Academic Press, New York, 1-43.10.1016/B978-0-12-576350-9.50004-7
  6. [6] H. Covitz, S.B. Nadler Jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8(1970), 5-11.10.1007/BF02771543
  7. [7] K. Deimling, Multivalued differential equations, W. de Gruyter, 1992.10.1515/9783110874228
  8. [8] A.-D. Filip, A. Petruşel, Fixed point theorems on spaces endowed with vector-valued metrics, FPTA, 2010(2010), Article ID 281381, 15 pp.10.1155/2010/281381
  9. [9] A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, 2003.10.1007/978-0-387-21593-8
  10. [10] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publisher, Dordrecht, 1996.10.1007/978-1-4613-1281-9
  11. [11] W.A.J. Luxemburg, A.C. Zaanen, Riesz Spaces, North-Holland Publishing Company, Amsterdam, 1(1971).
  12. [12] I. Muntean, Capitole Speciale de Analiză Funcţională, Cluj-Napoca, 1990 (in Romanian).
  13. [13] I. Muntean, În legătură cu o teoremă de punct fix în spaţii local convexe, Rev. Roumaine Math. Pures Appl., 19(1974), 1105-1109 (in Russian).
  14. [14] S.B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math., 30(1969), 475-487.10.2140/pjm.1969.30.475
  15. [15] D. O’Regan, N. Shahzad, R.P. Agarwal, Fixed point theory for generalized contractive maps on spaces with vector-valued metrics, Fixed Point Theory and Applications, Nova Sci. Publ., New York, 6(2007), 143-149.
  16. [16] D. O’Regan, Fixed-point theory for the sum of two operators, Appl. Math. Let., 9(1996), 1-8.10.1016/0893-9659(95)00093-3
  17. [17] A.I. Perov, On the Cauchy problem for a system of ordinary differential equations, Priblizhen. Metody Reshen. Differ. Uravn., 2(1964), 115-134 (in Russian).
  18. [18] A.I. Perov, A.V. Kibenko, On a certain general method for investigation of boundary value problems, Izv. Akad. Nauk SSSR Ser. Mat., 30(1966), 249-264 (in Russian).
  19. [19] I.-R. Petre, A. Petruşel, Krasnoselskii’s theorem in generalized Banach spaces and applications, Electron. J. Qual. Theory Differ. Equ., 85(2012), 1-20.10.14232/ejqtde.2012.1.85
  20. [20] A. Petruşel, A generalization of Krasnoselskii’s fixed point theorem, Proc. Sci. Comm. Metting of ”Aurel Vlaicu” Univ. Arad, Vol. 14A(1996), 109-112.
  21. [21] A. Petruşel, Integral Inclusions. Fixed point approaches, Annales Soc. Math. Pol., Series I: Commentiones Mathematicae XL, 2000, 147-158.
  22. [22] A. Petruşel, Multivalued operators and fixed points, Pure Math. Appl., 11(2000), No. 2, 361-368.
  23. [23] A. Petruşel, Multivalued weakly Picard operators and applications, Sci. Math. Jap., 59(2004), No. 1, 169-202.
  24. [24] A. Petruşel, I.A. Rus, The theory of a metric fixed point theorem for multivalued operators, Fixed Point Theory and its Applications, Yokohama Publ., 2010, 167-176.10.1155/2010/178421
  25. [25] R. Precup, A. Viorel, Existence results for systems of nonlinear evolution equations, Intern. J. Pure Appl. Math., Vol. 47(2008), No. 2, 199-206.
  26. [26] R. Precup, A. Viorel, Existence results for systems of nonlinear evolution inclusions, Fixed Point Theory, 11(2010), No. 2, 337-346.
  27. [27] R. Precup, Methods in Nonlinear Integral Equations, Kluwer, Dordrecht, 2002.10.1007/978-94-015-9986-3
  28. [28] R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems, Mathematical and Computer Modelling, 49(2009), No. 3-4, 703-708.
  29. [29] L. Rybinski, An application of the continuous selection theorem to the study of the fixed points of multivalued mappings, J. Math. Anal. Appl., 153(1990), 391-396.10.1016/0022-247X(90)90220-A
  30. [30] I.A. Rus, A. Petruȩl, A. Sîntămărian, Data dependence of the fixed point set of multivalued weakly Picard operators, Nonlinear Anal., 52(2003), 1947-1959.10.1016/S0362-546X(02)00288-2
  31. [31] I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008.
  32. [32] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
  33. [33] I.A. Rus, Principles and Applications of the Fixed Point Theory, Dacia, Cluj-Napoca, 1979 (in Romanian).
  34. [34] I.A. Rus, Technique of the fixed point structures for multivalued mappings, Math. Japonica, 38(1993), 289-296.
  35. [35] R.S. Varga, Matrix Iterative Analysis, Vol. 27 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2000.10.1007/978-3-642-05156-2
  36. [36] A. Viorel, Contributions to the study of nonlinear evolution equations, Ph.D. Thesis, Babeş-Bolyai University Cluj-Napoca, 2011.
  37. [37] P.P. Zabrejko, K-metric and K-normed linear spaces: survey, Collect. Math., 48(1997), No. 4-6, 825-859.
  38. [38] A.C. Zaanen, Riesz Spaces, North-Holland Publishing Company, Amsterdam, 2(1983).
  39. [39] E. Zeidler, Nonlinear Functional Analysis, Vol. I, Fixed Point Theorems, Springer-Verlag, Berlin, 1993.
  40. [40] M. Zuluaga, On a fixed point theorem and application to a two-point boundary value problem, Comment. Math. Univ. Carolinae, 27(1986), 731-735.
DOI: https://doi.org/10.2478/auom-2014-0041 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 177 - 192
Submitted on: Aug 1, 2012
|
Accepted on: Feb 1, 2013
|
Published on: Oct 20, 2015
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2015 Ioan-Radu Petre, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.