Have a personal or library account? Click to login
Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids Cover

Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids

By: Kunal Sharma and  Marin Marin  
Open Access
|Oct 2015

References

  1. [1] A. C. Eringen, Linear theory of micropolar elasticity; J. Math. Mech. 15(1966a), 909-924.10.1512/iumj.1966.15.15060
  2. [2] A. C. Eringen, 1966b Theory of micropolar fluids; J. Math.Mech. 16(1966b), 1-18.10.1512/iumj.1967.16.16001
  3. [3] A. C. Eringen, Non-local polar field theories. In: Continuum Physics (ed.) A C Eringen, Vol.IV (New York, Academic Press), 1976, 205-267.10.1016/B978-0-12-240804-5.50009-9
  4. [4] A.C. Eringen, Foundations of micropolar thermoelasticity, International Centre for Mechanical Science, Udline Course and Lectures 23, Springer-Verlag, Berlin, 1970.10.1007/978-3-7091-2904-3
  5. [5] W. Nowacki, Theory of Asymmetric Elasticity-Oxford:Pergamon, 1986
  6. [6] S. Dost and B. Taborrok, Generalized micropolar thermoelasticity, International Journal of Engineering Science, 16 (1978) 173-178.10.1016/0020-7225(78)90046-0
  7. [7] A.E. Green and K.A Lindsay, Thermoelasticity, Journal of Elasticity, 2 (1972) 1-7.10.1007/BF00045689
  8. [8] P.J. Chen, M.E. Gurtin and W.O. Williams, A note on non simple heat conduction, Zeitschrift fr angewandte Mathematik und Physik, 19 (1968) 960-970.10.1007/BF01602278
  9. [9] P.J. Chen, M.E. Gurtin and W.O. Williams, On the thermoelastic material with two temperature, Zeitschrift fr angewandte Mathematik und Physik, 20 (1969) 107-112.10.1007/BF01591120
  10. [10] M. Boley, Thermoelastic and irreversible thermodynamics, Journal of Applied Physics, 27(1956) 240-253.10.1063/1.1722351
  11. [11] W.E. Warren and P.J. Chen, Wave propagation in the two temperature theory of thermoelasticity, Acta Mechanica, 16 (1973) 21-23.
  12. [12] H.M. Youssef, Theory of two temperature generalized thermoelastic, IMA Journal of Applied Mathematics, (2005) 1-8.
  13. [13] P. Puri and P. Jordan, On the propagation of harmonic plane waves under the two temperature theory, International Journal of Engineering Science, 44 (2006) 1113-1126.
  14. [14] H.M. Youssef and E.A. Al-Lehaibi, A state approach of two temperature generalized thermoelasticity of one dimensional problem, International Journal of Solid and Structures, 44 (2007) 1550-1562.
  15. [15] H.M. Youssef and H.A. Al-Harby, State space approach of two temperature generalized thermoelasticity of infinite body with a spherical cavity subjected to different types of thermal loading, Archive Applied Mechanics, 77 (2007) 675-687.10.1007/s00419-007-0120-6
  16. [16] A. Magana and R. Quintanilla, Uniqueness and growth of solution in two temperature generalized thermoelastic theories, Mathematics and Mechanics of Solids, Online (2008).10.1177/1081286507087653
  17. [17] S. Mukhopadhyay and R. Kumar, Thermoelastic interaction on two temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity, Journal of Thermal Stresses, 32 (2009) 341-360.10.1080/01495730802637183
  18. [18] K. Roushan and M. Santwana, Effect of thermal relaxation time on plane wave propagation under two temperature thermoelasticity, International Journal of Engineering Science, 48 (2010) 128-139.10.1016/j.ijengsci.2009.07.001
  19. [19] S. Kaushal, N. Sharma and R. Kumar, Propagation of waves in generalized thermoelastic continua with two temperature, International Journal of Applied Mechanics and Engineering, 15 (2010) 1111-1127.
  20. [19] S. Kaushal, R. Kumar and A. Miglani, Wave propagation in temperature rate dependent thermoelasticity with two temperature, Mathematical Sciences, 5 (2011) 125-146.
  21. [20] M.A. Ezzat and E.S. Aiwad, Constitutive relations, Uniqueness of solution and thermal shock application in the linear theory of micropolar generalized thermoelasticity involving two temperature, Journal of Thermal Stresses, 33 (2010) 226-250.10.1080/01495730903542829
  22. [21] M.A. Ezzat, F. Hamza and E. Awad, Electro Magneto-thermoelastic plane waves in micropolar solid involving two temperatures, Acta Mechanica Solida Sinica, 23 (2010) 200-212.10.1016/S0894-9166(10)60022-5
  23. [23] J.M. Baik and R.B. Thomson, Ultrasonic scattering from imperfect interfaces a quasi-static model. Journal of Nondestructive Evaluation, 4 (1984) 177-176.10.1007/BF00566223
  24. [22] S.I. Rokhlin, Adhesive joint characterization by ultrasonic surface and interface waves [M]- Adhesive joints: Formation, Characteristics and Testing. Edited by K.L. Mittal (plenum, New York), 1984, 307-345.10.1007/978-1-4613-2749-3_20
  25. [23] T.C. Angel and J.D. Achenbach, Reflection and transmission of elastic waves by a periodic array of crack, Journal of Applied Mechanics, 52 (1985) 33-41.10.1115/1.3169023
  26. [24] A. Pilarski and J.L. Rose, A transverse wave ultrasonic oblique- incidence technique for interface weakness detection in adhesive bonds, Journal of Applied Physics, 63 (1988) 300-307.10.1063/1.340294
  27. [25] A.I. Lavrentyev and S.I. Rokhlin, Ultrasonic spectroscopy of imperfect contact interfaces between a layer and two solids, Journal of Acoustical Society of America, 103 (1998) 657-664.10.1121/1.423235
  28. [26] R. Kumar and N. Sharma, Effect of viscocity on wave propagation between two micropolar viscoelastic thermoelastic solids with two relaxation times having interfacial imperfections, International Journal of Manufacturing Science and Technology, 1 (2007) 133-152.
  29. [27] R. Kumar, N. Sharma and P. Ram, Reflection and transmission of micropolar elastic waves at an imperfect boundary, Multidiscipline Modeling in Materials and Structure, 4 (2008) 15-36.10.1163/157361108783470388
  30. [28] R. Kumar, N. Sharma and P. Ram, Response of imperfections at the boundary surface, International eJournal of Engineering Mathematics:Theory and Applications (IeJEMTA), 3 (2008) 90-109.
  31. [29] R. Kumar, N. Sharma and P. Ram, Interfacial imperfection on reflection and transmission of plane waves in anisotropic micropolar media, Theoretical and Applied Fracture Mechanics, 49 (2008) 305-312.10.1016/j.tafmec.2008.02.007
  32. [30] R. Kumar, N. Sharma and P. Ram, Effect of stiffness on reflection and transmission of micropolar thermoelastic waves at an interface between an elastic and micropolar generalized thermoelastic solid, Structural Engineering and Mechanics, an International Journal, 31 (2009) 117-135.10.12989/sem.2009.31.2.117
  33. [31] P. Ram and N. Sharma, Reflection and Transmission of micropolar thermoelastic waves with an imperfect bonding, International Journal of Applied Mathematics and Mechanics, 4 (2008) 1-23.
  34. [32] R. Kumar and N. Sharma, Effect of viscocity and stiffness on wave propagation in micropolar visoelastic media, International Journal of Applied Mechanics and Engineering, 4 (2009) 415-431.
  35. [33] N. Sharma, S. Kaushal and R. Kumar, Effect of viscocity and stiffness on amplitude ratios in microstretch viscoelastic media, Applied Mathematics and Information Sciences, 5 (2011) 321-341.
  36. [34] R. Kumar and V. Chawala, Effect of rotation and stiffness on surface wave propagation in a elastic layer lying over a generalized thermodiffusive elastic half space with imperfect boundary, Journal of Solid Mechanics, 2 (2010) 28-42.
  37. [35] R. Kumar and V. Chawala, Effect of rotation on surface wave propagation in a elastic layer lying over a thermo diffusive elastic half space having imperfect boundary, International Journal of Applied Mechanics and Engineering, 16 (2011) 37-55.
  38. [36] R. Kumar and V. Chawala, Wave propagation at the imperfect boundary between transversely isotropic thermodiffusive Eastic layer and half space, Journal of Engineering Physics and Thermophysics, 84 (2011)1192-1200.10.1007/s10891-011-0584-7
  39. [37] M. Marin, R.P. Agarwal, S.R. Mahmoud, Modeling a microstretch thermoelastic body with two temperature, Abstract and Applied Analysis, doi: 10.1155/2013/583464, Vol. 2013 (2031), 7 pg.10.1155/2013/583464
  40. [38] M. Marin, A partition of energy in thermoelsticity of microstretch bodies, Nonlinear Analysis: RWA, Vol. 11, 4(2010), 2436-2447,10.1016/j.nonrwa.2009.07.014
  41. [39] M. Marin, Some estimates on vibrations in thermoelasticity of dipolar bodies, Journal of Vibration and Control, Vol. 16, 1(2010), 33-4710.1177/1077546309103419
  42. [40] M. Marin, An evolutionary equation in thermoelasticity of dipolar bodies, Journal of Mathematical Physiscs, Vol. 40, 3(1999), 1391-139910.1063/1.532809
DOI: https://doi.org/10.2478/auom-2014-0040 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 151 - 176
Submitted on: Jun 1, 2013
Accepted on: Aug 1, 2013
Published on: Oct 20, 2015
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2015 Kunal Sharma, Marin Marin, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.