Have a personal or library account? Click to login
Some remarks on limit mixed Hodge structures and spectrum Cover

References

  1. [1] Deligne, P., Equation différentielle à points singuliers réguliers, Lect. Notes in Math. 163, Springer, Berlin, 1970.10.1007/BFb0061194
  2. [2] Deligne, P., Le formalisme des cycles évanescents, in SGA7 XIII and XIV, Lect. Notes in Math. 340, Springer, Berlin, 1973, pp. 82–115 and 116–164.10.1007/BFb0060509
  3. [3] Deligne, P., Théorie de Hodge, III, Publ. Math. I.H.E.S. 44 (1974), 5–77.10.1007/BF02685881
  4. [4] Denef, J. and Loeser, F., Motivic Igusa zeta functions, J. Alg. Geom. 7 (1998), 505–537.
  5. [5] Dimca, A., Monodromy and Hodge theory of regular functions, in New Developments in Singularity Theory, Kluwer Acad. Publ., Dordrecht, 2001, pp. 257–278.10.1007/978-94-010-0834-1_11
  6. [6] Dimca, A., Sheaves in Topology, Universitext, Springer, 2004.10.1007/978-3-642-18868-8
  7. [7] Looijenga, E., Motivic measures, in Séminaire Bourbaki 1999/2000, Astérisque 276 (2002), 267–297.
  8. [8] Matsui, Y. and Takeuchi, K., Monodromy at infinity of polynomial maps and Newton polyhedra, preprint (arXiv:0912.5144v11).
  9. [9] Murre, J.P., On the motive of an algebraic surface, J. reine angew. Math. 409 (1990), 190–204.
  10. [10] Raibaut, M., Fibre de Milnor motivique à l’infini, C. R. Acad. Sci. Paris, Ser. I 348 (2010), 419–422.
  11. [11] Sabbah, C., Monodromy at infinity and Fourier transform, Publ. RIMS, Kyoto Univ. 33 (1997), 643–685.10.2977/prims/1195145150
  12. [12] Sabbah, C., Hypergeometric periods for a tame polynomial, Port. Math., 63 (2006), 173–226 (or arXiv:math/9805077).
  13. [13] Saito, M., Exponents and Newton polyhedra of isolated hypersurface singularities, Math. Ann. 281 (1988), 411–417.10.1007/BF01457153
  14. [14] Saito, M., Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ. 24 (1988), 849–995.10.2977/prims/1195173930
  15. [15] Saito, M., Mixed Hodge modules, Publ. RIMS, Kyoto Univ. 26 (1990), 221–333.10.2977/prims/1195171082
  16. [16] Saito, M., On Steenbrink’s conjecture, Math. Ann. 289 (1991), 703–716.10.1007/BF01446597
  17. [17] Scherk, J. and Steenbrink, J.H.M., On the mixed Hodge structure on the cohomology of the Milnor fibre, Math. Ann. 271 (1985), 641–665.10.1007/BF01456138
  18. [18] Scholl, A.J., Classical Motives, Proc. Symp. Pure Math. 55 (1994), Part 1, 163–187.10.1090/pspum/055.1/1265529
  19. [19] Steenbrink, J.H.M., Limits of Hodge structures, Inv. Math. 31 (1976), 229–257.10.1007/BF01403146
  20. [20] Steenbrink, J.H.M., Mixed Hodge structure on the vanishing cohomology, in Real and complex singularities, Sijtho and Noordho, Alphen aan den Rijn, 1977, pp. 525–563.10.1007/978-94-010-1289-8_15
  21. [21] Steenbrink, J.H.M., Intersection form for quasi-homogeneous singularities, Compositio Math. 34 (1977), 211–223.
  22. [22] Steenbrink, J.H.M., The spectrum of hypersurface singularities, Astérisque 179-180 (1989), 163–184.
  23. [23] Steenbrink, J.H.M. and Zucker, S., Variation of mixed Hodge structure I, Inv. Math., 80 (1985), 489–542.10.1007/BF01388729
  24. [24] Varchenko, A.N., Asymptotic Hodge structure in the vanishing cohomology, Math. USSR Izv. 18 (1982), 469–512.10.1070/IM1982v018n03ABEH001395
DOI: https://doi.org/10.2478/auom-2014-0032 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 69 - 78
Submitted on: Oct 16, 2012
Accepted on: Nov 5, 2012
Published on: Oct 20, 2015
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2015 Alexandru Dimca, Morihiko Saito, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.