Have a personal or library account? Click to login
On the Classification of Simple Singularities in Positive Characteristic Cover
Open Access
|Oct 2015

References

  1. [1] Arnold, V.I.: Normal form of functions near degenerate critical points. Russian Math. Survays 29, (1995), 10-50.10.1070/RM1974v029n02ABEH003846
  2. [2] Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H.: Singular 3-1-1 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2010).10.1145/1504347.1504377
  3. [3] De Jong, T.; Pfister, G.: Local Analytic Geometry. Vieweg (2000).10.1007/978-3-322-90159-0
  4. [4] Greuel, G.-M.; Kröning, H.: Simple singularities in positive characteristic. Math.Z. 203, 339-354 (1990).
  5. [5] Greuel, G.-M.; Pfister, G.: A Singular Introduction to Commutative Algebra. Second edition, Springer (2007).
  6. [6] Greuel, G.-M.; Nguyen Hong Duc: Right simple singularities in positive characteristic, ArXiv: 1206.3742.
  7. [7] Lidl, R.;Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Applications, Vol.20. Cambridge University Press 1997.
DOI: https://doi.org/10.2478/auom-2014-0026 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 5 - 20
Submitted on: Feb 1, 2013
Accepted on: Jun 1, 2013
Published on: Oct 20, 2015
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2015 Deeba Afzal, Muhammad Ahsan Binyamin, Faira Kanwal Janjua, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.