Have a personal or library account? Click to login
Known Results and Open Problems in Hypercomplex Convexity Cover
By: Yuri Zelinskii  
Open Access
|Dec 2014

References

  1. [1] Yu. Zelinskii. Convexity. Selected topics, Proceedings of the Institute of mathematics NAS Ukraine.-v.92.- Kyiv, 2012. - 280 pp. (in Russian).
  2. [2] L.A. Santalo, Integral Geometry and Geometric Probability (Vol.1 of Encyclopedia of Mathematics and its Applications, G.-C. Rota, Editor), Addison-Wesley Publishing Company, Massachusetts, 1976.
  3. [3] G.á. Mkrtchyan, On strong hypercomplex convexity, Ukrainian Mathematical Journal, 1990.- 42, N 2.- p. 182-187. (in Russian).10.1007/BF01071009
  4. [4] H. Behnke, E. Peschl, Zur Theorie der Funktionen mehrerer komplexer Veränderlichen Konvexität in bezug auf analytische Ebenen im kleinen und groβen, Math. Ann, 1935, Bd. 111, N 2. - S, 158-177.@@[5] A. Martineau, Sur la topologie des espaces de fonctions holomorphes, Math. Ann, 1966, Bd. 163, N 1, S. 62-88.10.1007/BF01472211
  5. [6] L.A. Aizenberg, The expansion of holomorphic functions of several complex variables in partial fractions, Siberian Mathematical Journal, 1967, v.8, 5, p. 1124-1142. (in Russian).10.1007/BF01040660
  6. [7] Yuri Zelinskii, Multivalued mappings in the analysis, Naukova dumka, Kyiv, 1993, 264 p. (in Russian).
  7. [8] L. Hörmander, Notions of Convexity, Birkhäauser Verlag, Boston, 1994, second ed. 2007, 414 p.
  8. [9] M. Andersson, M. Passare, R. Sigurdsson,Complex convexity and analytic functionals, Birkhäuser Verlag, Basel, 2004, 160 p.10.1007/978-3-0348-7871-5
  9. [10] S.V. Znamenskii, Seven problems of C-convexity, Complex analysis in modern mathematics: To the 80th anniversary of the birth Shabat B.V. (Editor E. Chirka), FAZYS, Moscow, 2001, p. 123-132. (in Russian).
  10. [11] R.D. Mauldin, The Scottish Book, Birkhäuser Verlag, Boston, 1981.
  11. [12] A. Kosiński, A theorem on families of acyclic sets and its applications, Pacific J. Math. - 12,1962, p.317-325.10.2140/pjm.1962.12.317
  12. [13] Luis Montejano, About a problem of Ulam concerning flat sections of manifolds, Comment. Math. Helvetici, 1990, 65,p.462-473.10.1007/BF02566620
  13. [14] Georg Aumann, On a Topological Characterization of Compact Convex Point Sets, The Annals of Mathematics, 2nd Ser., Vol.37, No. 2 (Apr., 1936), p. 443-447.10.2307/1968456
  14. [15] E. Shchepin, A Criterion of convexity of a open set (in Russian), III Tiraspol Symposium on General Topology.- Shtiintsa, Chisinau, 1973, p.149.
  15. [16] A.S. Besicovitch, A problem on a Circle, J. London Math. Soc.,1961 - 36, p.241-244.10.1112/jlms/s1-36.1.241
  16. [17] L.W. Danzer, A Characterization of the Circle, Amer. Math. Soc, Providence, R.I. Convexity, Proc. Symposia in Pure Math., 1963. - vol. VII,p. 99-100.10.1090/pspum/007/0154191
  17. [18] Tudor Zamfirescu, An infinitesymal version of the Besicovitch - Danzer Characterization of the Circle, Geometriae Dedicata. - 1988 - 27, p. 209-212.10.1007/BF00151352
  18. [19] M. Tkachuk, Characterization of the Circle of the type Besikovitch-Danzer, Transaction of the Institute of mathematics NAS Ukraine,2006. v.3, N 4., p.366-373. (in Ukrainian).
  19. [20] Yu.B. Zelinskii, M.V. Tkachuk, B.A. Klishchuk, Integral geometry and Mizel's problem, Arxiv preprint arXiv: 1204.6287v1 [math.CV].
  20. [21] Yu. Zelinskii, I. Vyhovska, M. Tkachuk, On some criteria of convexity for compact sets, Ukrainian Mathematical Journal, 2011, v.63, 4.- p. 466-471 (in Ukrainian).10.1007/s11253-011-0522-z
  21. [22] G.á. Mkrtchyan, On properties of hypercomplex convex sets, Messenger of Russian Armenian University -2012, v.2, p.20-25 (in Russian).
  22. [23] T.M. Osipchuk, Analytic conditions of the linear convexity in Hn, Complex analysis and flow with free boundaries / Transactions of the Institute of mathematics NAS Ukraine. - Kyiv: Institute of mathematics NAS Ukraine, 2006. - v.3, 4. - p. 244-254 (in Ukrainian).
  23. [24] Yu.B. Zelinskii, M.V. Tkachuk, B.A. Klishchuk, Integral geometry and Mizel's problem, Bulletin de la societé des sci. et letters de Lódź, v.63. 1.,2013, p.20-29.10.3917/bhesv.201.0063
  24. [25] L. Bazylevych, Topology of hyperspace of convex sets of constant width, Mathem. Notes.,1997,62, 6., p. 813-819. (in Russian)10.1007/BF02355455
DOI: https://doi.org/10.2478/auom-2014-0025 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 289 - 297
Submitted on: Oct 1, 2013
Accepted on: Dec 1, 2013
Published on: Dec 10, 2014
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 Yuri Zelinskii, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.