Have a personal or library account? Click to login
On the Factorization of Polynomials Over Discrete Valuation Domains Cover
Open Access
|Dec 2014

References

  1. [1] A. Bishnoi, S. K. Khanduja, K. Sudesh, Some extensions and applications of the Eisenstein irreducibility criterion, Developments in Mathematics 18 (2010), 189–197.10.1007/978-1-4419-6211-9_10
  2. [2] A.I. Bonciocat, N.C. Bonciocat, Some classes of irreducible polynomials, Acta Arith. 123 (2006), no. 4, 349-360.
  3. [3] A.I. Bonciocat, N.C. Bonciocat, A Capelli type theorem for multiplicative convolutions of polynomials, Math. Nachr. 281 (2008), no. 9, 1240-1253.
  4. [4] N.C. Bonciocat, On an irreducibility criterion of Perron for multivariate polynomials, Bull. Math. Soc. Sci. Math. Roumanie 53 (101) No. 3 (2010), 213-217.
  5. [5] N.C. Bonciocat, From prime numbers to irreducible multivariate polynomials, An. ştiint. Univ. Ovidius Constanţa Ser. Mat. 19 (2011) no. 2, pag. 37 - 53.
  6. [6] N.C. Bonciocat, Schönemann-Eisenstein-Dumas-type irreducibility conditions that use arbitrarily many prime numbers, arXiv:1304.0874v1.
  7. [7] N.C. Bonciocat, Y. Bugeaud, M. Cipu, M. Mignotte, Irreducibility criteria for sums of two relatively prime polynomials, Int. J. Number Theory 9 (6) (2013), 1529–1539.10.1142/S1793042113500413
  8. [8] N.C. Bonciocat, A. Zaharescu, Irreducible multivariate polynomials obtained from polynomials in fewer variables, J. Pure Appl. Algebra 212 (2008), no. 10, 2338-2343.
  9. [9] N.C. Bonciocat, A. Zaharescu, Irreducible multivariate polynomials obtained from polynomials in fewer variables, II, Proc. Indian Acad. Sci. Math. Sci. 121 (2011) no. 2, 133-141.
  10. [10] G. Dumas, Sur quelques cas d'irréducibilité des polynômes á coefficients rationnels, Journal de Math. Puers et Appl., 12 (1906), 191-258.
  11. [11] G. Eisenstein, Über die Irreductibilität und einige andere Eigenschaftender Gleichung, von welcher die Theilung der ganzen Lemniscate abhängt, J. Reine Angew. Math. 39 (1850), 160–182.
  12. [12] M. Filaseta, On the irreducibility of almost all Bessel Polynomials, Acta Math. 174 (1995), no. 2, 383–397.
  13. [13] M. Filaseta, A generalization of an irreducibility theorem of I. Schur, in: Analytic Number Theory, Proc. Conf. in Honor of Heini Halberstam, vol. 1, (B.C. Berndt, H.G. Diamond, and A.J. Hildebrand, eds.), Birkhäuser, Boston, 1996, pp. 371–395.10.1007/978-1-4612-4086-0_21
  14. [14] M. Filaseta, T. Kidd, O. Trifonov, Laguerre polynomials with Galois group Am for each m, J. Number Theory 132 (2012), 776–805.10.1016/j.jnt.2011.09.012
  15. [15] M. Filaseta, C. Finch, J.R. Leidy, T.N. Shorey's influence in the theory of irreducible polynomials, Diophantine Equations (ed. N. Saradha), Narosa Publ. House, New Delhi, 2005, pp. 77–102.
  16. [16] M. Filaseta and T.-Y. Lam, On the irreducibility of the Generalized La-guerre polynomials, Acta Arith. 105 (2002), no. 2, 177–182.
  17. [17] M. Filaseta and O. Trifonov, The irreducibility of the Bessel Polynomials, J. Reine Angew. Math. 550 (2002), 125–140.
  18. [18] M. Filaseta and R. L. Williams, Jr., On the irreducibility of a certain class of Laguerre polynomials, J. Number Theory 100 (2003), no. 2, 229–250.
  19. [19] L. Panaitopol, D. ştefănescu, On the generalized difference polynomials, Pacific J. Math. 143 (1990), 341–348.10.2140/pjm.1990.143.341
  20. [20] L.A. Rubel, A. Schinzel, H. Tverberg, On difference polynomials and hereditary irreducible polynomials, J. Number Theory 12 (1980), 230–235.10.1016/0022-314X(80)90058-X
  21. [21] T. Schönemann, Von denjenigen Moduln, welche Potenzen von Primzahlen sind, J. Reine Angew. Math. 32 (1846), 93–105.
  22. [22] D. ştefănescu, On the irreducibility of bivariate polynomials, Bull. Math. Soc. Sci. Math. Roumanie, 56 (104) (2013), 377–384.
  23. [23] A. Zaharescu, Irreducibility over valued fields in the presence of a secondary valuation, Hiroshima Math. J. 34 (2004), 167–176.10.32917/hmj/1150998160
  24. [24] A. Zaharescu, Residual transcendental extentions of valuations, irreducible polynomials and trace series over p–adic fields, Bull. Math. Soc. Sci. Math. Roumanie, 56 (104) (2013), 125-131.
  25. [25] S.H. Weintraub, A mild generalization of Eisenstein's criterion, Proc. Amer. Math. Soc. 141 (2013), no. 4, 1159–1160.
DOI: https://doi.org/10.2478/auom-2014-0023 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 273 - 280
Submitted on: Nov 1, 2013
Accepted on: Nov 1, 2013
Published on: Dec 10, 2014
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 Doru Ştefănescu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.