Have a personal or library account? Click to login
About Some Split Central Simple Algebras Cover

References

  1. [1] V. Acciaro, Solvability of Norm Equations over Cyclic Number Fields of Prime Degree, Mathematics of Computation, 65(216)(1996), 1663-1674.10.1090/S0025-5718-96-00760-0
  2. [2] T. Albu, T. I. D. Ion, Chapters of the algebraic Number Theory (in Romanian), Ed. Academiei, Bucharest, 1984.
  3. [3] M. Banescu, The natural numbers of the form x2 + 7y2, G.M. CXII 10, 2007.
  4. [4] Z.I. Borevich, I.R. Shafarevich, Number Theory, Academic Press Inc, New York, 1966.
  5. [5] D. Cox, Primes of the Form x2 + ny2:Fermat, Class Field Theory, and Complex Multiplication, A Wiley - Interscience Publication, New York, 1989.
  6. [6] A. Dolphin, Metabolic involutions and quadratic radical extensions, Journal of Algebra and Its Applications, vol.12, no.3, (2013) 1250174 (10p.).10.1142/S0219498812501745
  7. [7] H.R. Dorbidi, M. Mahdavi-Hezavehi, Frattini subgroup of the unit group of central simple algebras, Journal of Algebra and Its Applications, vol.11, no.3 (2012), 1250061 (8p.).10.1142/S0219498812500612
  8. [8] C. Flaut, V. Shpakivskyi, Real matrix representations for the complex quaternions, Adv. Appl. Clifford Algebras, 23(3)(2013), 657-671.10.1007/s00006-013-0387-3
  9. [9] C. Flaut, D. Savin, Some properties of the symbol algebras of degree 3, accepted for publication in Math. Reports (Bucharest).
  10. [10] C. Flaut, D. Savin, Some examples of division symbol algebras of degree 3 and 5, submitted.
  11. [11] K. Raja Rama Gandhi, Primes of the form x2 +ny2, Bulletin of Society for Mathematical Services and Standards, Vol. 1 No. 3 (2012), 96-104.
  12. [12] P. Gille, T. Szamuely, Central Simple Algebras and Galois Cohomology, Cambridge University Press, 2006.10.1017/CBO9780511607219
  13. [13] K. Ireland, M. Rosen A Classical Introduction to Modern Number Theory, Springer Verlag, 1992.
  14. [14] M. Jafari, Y. Yayli, Rotation in four dimensions via Generalized Hamilton operators, Kuwait Journal of Science, vol 40 (1) June 2013, 67-79.
  15. [15] G.J. Janusz, Algebraic number fields, Academic Press, London, 1973.
  16. [16] T. Y. Lam, Introduction to Quadratic Forms over Fields, American Mathematical Society, 2004.10.1090/gsm/067
  17. [17] A. Ledet, Brauer Type Embedding Problems, American Mathematical Society, 2005.10.1090/fim/021
  18. [18] J.S. Milne, Class Field Theory, http://www.math.lsa.umich.edu/ jmilne.
  19. [19] J. Milnor, Introduction to Algebraic K-Theory, Annals of Mathematics Studies, Princeton Univ. Press, 1971.
  20. [20] R.S. Pierce, Associative Algebras, Springer Verlag, 1982.10.1007/978-1-4757-0163-0
  21. [21] D. Savin, C. Flaut, C. Ciobanu, Some properties of the symbol algebras, Carpathian Journal of Mathematics, vol. 25, No. 2 (2009), 239-245.
  22. [22] P. Stevenhagen, Primes Represented by Quadratic Forms, websites.math.leidenuniv.nl/algebra/Stevenhagen-Primes.pdf
  23. [23] M. Tărnăuceanu, A characterization of the quaternion group, An. St. Univ. Ovidius Constanta, 21(1)(2013), 209-214.10.2478/auom-2013-0013
DOI: https://doi.org/10.2478/auom-2014-0022 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 263 - 272
Submitted on: Nov 1, 2013
Accepted on: Jan 1, 2014
Published on: Dec 10, 2014
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 Diana Savin, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.