Have a personal or library account? Click to login
Monogenic Functions in a Finite-Dimensional Semi-Simple Commutative Algebra Cover
Open Access
|Dec 2014

References

  1. [1] C. Segre, The real representations of complex elements and extentions to bicomlex systems, Math. Ann., 40(1892), 413 – 467.10.1007/BF01443559
  2. [2] F. Ringleb, Beiträge zur funktionentheorie in hyperkomplexen systemen, I, Rend. Circ. Mat. Palermo, 57(1)(1933), 311 – 340.10.1007/BF03017582
  3. [3] J.D. Riley, Contributions to the theory of functions of a bicomplex variable, Tohoku Math. J., 5(2)(1953), 132 – 165.10.2748/tmj/1178245302
  4. [4] G. B. Price, An introduction to multicomplex spaces and functions, New York, Marcel Dekker, 1991.
  5. [5] S. RÖnn Bicomplex algebra and function theory, arXiv: math/0101200v1 [math.CV], 24 Jan 2001.
  6. [6] D. A. Pinotsis, Commutative quaternions, spectral analysis and boundary value problems, Complex Variables and Elliptic Equations, 57(9)(2012), 953 – 966.10.1080/17476933.2010.534148
  7. [7] A. K. Bakhtin, A generalization of some results in the theory of univa-lent functions on a multi-dimensional complex space, Dop. NAN Ukr., (3)(2011), 7 – 11 [in Russian].
  8. [8] P. W. Ketchum, Analytic functions of hypercomplex variables, Trans. Amer. Math. Soc., 30(4)(1928), 641 – 667.10.1090/S0002-9947-1928-1501452-7
  9. [9] I.P. Mel'nichenko, The representation of harmonic mappings by mono-genic functions, Ukr. Math. J., 27(5)(1975), 499 – 505.10.1007/BF01089142
  10. [10] I. P. Mel'nichenko and S. A. Plaksa, Commutative algebras and spatial potential fields, Kiev, Inst. Math. NAS Ukraine, 2008 [in Russian].
  11. [11] S.A. Plaksa, S.V. Grishchuk and V.S. Shpakivskyi, Commutative algebras of monogenic functions associated with classic equations of mathematical physics, Contemporary Mathematics, 553(2011), 245 – 258.10.1090/conm/553/10943
  12. [12] S. A. Plaksa and R. P. Pukhtaievych, Constructive description of mono-genic functions in a three-dimensional harmonic algebra with one-dimensional radical, Ukr. Math. J., 65(5) (2013), 670 – 680.10.1007/s11253-013-0810-x
  13. [13] R. P. Pukhtaievych, Monogenic functions in a three-dimensional harmonic semi-simple algebra, Zb. Pr. Inst. Mat. NAN Ukr., 10(4-5)(2013), 352 – 361.
  14. [14] S. A. Plaksa, Commutative algebras associated with classic equations of mathematical physics, Advances in Applied Analysis, Trends in Mathematics, Springer, Basel, 2012, 177 – 223.10.1007/978-3-0348-0417-2_5
  15. [15] E.R. Lorch, The theory of analytic runction in normed abelin vector rings, Trans. Amer. Math. Soc., 54(1943), 414 – 425.10.1090/S0002-9947-1943-0009090-0
  16. [16] E.K. Blum, A theory of analytic functions in banach algebras, Trans. Amer. Math. Soc., 78(1955), 343 – 370.10.1090/S0002-9947-1955-0069405-2
  17. [17] A. Sudbery, Quaternionic analysis, Math. Proc. Camb. Phil. Soc., 85(1979), 199 – 225.10.1017/S0305004100055638
  18. [18] W. Spröβig, Eigenvalue problems in the framework of Clifford analysis, Advances in Applied Clifford Algebras, 11(2001), 301 – 316.10.1007/BF03219141
  19. [19] F. Brackx and R. Delanghe, Duality in hypercomplex functions theory, J. Funct. Anal., 37(2)(1980), 164–181.10.1016/0022-1236(80)90039-7
  20. [20] S. Bernstein, Factorization of the nonlinear Schrödinger equation and applications, Complex Variables and Elliptic Equations, 51(5-6)(2006), 429–452.10.1080/17476930500481400
  21. [21] V. V. Kravchenko and M. V. Shapiro, Integral representations for spatial models of mathematical physics, Pitman Research Notes in Mathematics, Addison Wesley Longman Inc, 1996.
  22. [22] B. Schneider and E. Karapinar, A note on biquaternionic MIT bag model, Int. J. Contemp. Math. Sci., 1(10)(2006), 449–461.10.12988/ijcms.2006.06049
  23. [23] S. A. Plaksa and V. S. Shpakivskyi, Cauchy theorem for a surface integral in commutative algebras, Complex Variables and Elliptic Equations, 59(1)(2014), 110–119.10.1080/17476933.2013.845178
DOI: https://doi.org/10.2478/auom-2014-0018 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 221 - 235
Submitted on: Dec 1, 2013
Accepted on: Jan 1, 2014
Published on: Dec 10, 2014
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 S. A. Plaksa, R. P. Pukhtaievych, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.