Have a personal or library account? Click to login
Sur la 2-Extension Maximale Non Ramifiée de la Z2-Extension Cyclotomique de Certains Corps Quadratiques Cover

Sur la 2-Extension Maximale Non Ramifiée de la Z2-Extension Cyclotomique de Certains Corps Quadratiques

By: Ali Mouhib  
Open Access
|Dec 2014

References

  1. [1] A. Azizi, A. Mouhib, Capitulation des 2-classes d'idéaux de Q(√2,√d) oú d est un entier naturel sans facteurs carées, Acta Arith. 109, no 1, 27-73 (2003).
  2. [2] T. Fukuda, Remarks on Zp-extensions of number fields, Proc. Japan Acad. Ser. A 70 (1994) 264-266.
  3. [3] T. Fukuda and K. Komatsu, On the Iwasawa λ-Invariant of the cyclo-tomic Z2-extension of a real quadratic fields, Tokyo J. Math. 28, No. 1 (2005) 259-264.
  4. [4] B. Ferrero and L. C. Washington, The Iwasawa invariant μpvanishes for abelian number fields, Ann. of Math., 109 (1979), 377-395.10.2307/1971116
  5. [5] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976) 263-284.10.2307/2373625
  6. [6] D. Gorenstein, Finite Groups, Harper and Row, new York, 1986.
  7. [7] K. Iwasawa, On Zl-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246-326.10.2307/1970784
  8. [8] H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert's theorem 94, J. Number Theory 8 (1976) 271-279.10.1016/0022-314X(76)90004-4
  9. [9] A. Mouhib and A. Movahhedi, p-class tower of a Zp-extension, Tokyo Journal of Math. vol 31 (2008), 321- 33210.3836/tjm/1233844054
  10. [10] T. Nguyen Quang Do, M. Lescop, Iwasawa Descent and co-descent for units modulo circular units, Pure and Applied Mathematics Quarterly. Volume 2, Number 2 (2006), 199-217.
  11. [11] Neukirch, Jürgen; Schmidt, Alexander; Wingberg Kay, Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften [Fundamental principles of Mathematical Sciences], 323. Springer-Verlag, Berlin, 2000.
  12. [12] M. Ozaki, H. Taya, On the Iwasawa λ2-invariants of certain families of real quadratic fields. Manuscripta Math. 94 (1997), no. 4, 437-444.
  13. [13] L. Redei et H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1933), 69-74.
DOI: https://doi.org/10.2478/auom-2014-0016 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 207 - 214
Submitted on: Jul 1, 2013
Accepted on: Nov 1, 2013
Published on: Dec 10, 2014
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 Ali Mouhib, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.