Have a personal or library account? Click to login
Finite Geometric Spaces, Steiner Systems and Cooperative Games Cover
Open Access
|Dec 2014

References

  1. [1] K. J. Arrow, Social Choose and Individual Values, J. Wiley and Sons, New York, 1951, 2nd ed 1963.
  2. [2] L. Berardi, F. Eugeni, Blocking sets in projective plane of order four, Ann. of Discrete Math. 37 (1988), 43-50.10.1016/S0167-5060(08)70223-1
  3. [3] L. Berardi, F. Eugeni, Blocking sets e Teoria dei Giochi, Atti Sem. Mat. Fis. Univ. Modena 34 (1988), 165-196.
  4. [4] L. Berardi, F. Eugeni, Blocking sets and game theory II, Proc. “Blocking sets”, Gissen, 1989, Springer.
  5. [5] L. Berardi, S. Innamorati, Irreducible blocking sets in the projective plane of order five, Atti Sem. Mat. Fis. Univ. Modena, 38 (1990), 293-311.
  6. [6] A. Beutelspacher, Blocking sets and partial spreads in finite projective spaces, Geom. Dedicata 9 (1980), 425-449.10.1007/BF00181559
  7. [7] A. Beutelspacher, U. Rosenbaum, Projective Geometry, Cambridge University Press, 1998
  8. [8] A. Blokhuis, Blocking sets in Desarguesian planes, Proc. Int. Conf. Comb. “Paul Erdos is Eighty”, Bolyai Soc. Math. Studies, (1993), 1-20.
  9. [9] A. Blokhuis, A. E. Brower, Blocking sets in Desarguesian projective planes, Bull. London Math. Soc. 18 (1986), 132-134.10.1112/blms/18.2.132
  10. [10] A. A. Bruen, Baer subplanes and blocking sets, Bull. Amer. Math. Soc. 76 (1970) 342-344.10.1090/S0002-9904-1970-12470-3
  11. [11] A. A. Bruen, Blocking sets in projective planes, SIAM J. Appl. Math. 21 (1971), 380-392.10.1137/0121041
  12. [12] A. A. Bruen, J. A. Thas, Blocking sets, Geom. Dedicata 6 (1977), 193-203.
  13. [13] E. Burger, Introduzione alla teoria dei giochi, Franco Angeli editore, 1967
  14. [14] P.J. Cameron, Four lectures on finite geometry, in Finite geometries, editors C. A. Baker, L.M. Batten, Lecture Notes in Pure and Appl. Math. 103, M. Dekker, New York, 1985, 27-63.
  15. [15] J. Chvalina, S. Hoskova-Mayerova and A. D. Nezhad, General actions of hyperstructures and some applications, Analele Univ. Ovidius Constanta, vol. 21 (1) 2013, pp.59 - 8210.2478/auom-2013-0004
  16. [16] M. Cerasoli, F. Eugeni, M. Protasi, Introduzione alla Matematica Disc-reta, Zanichelli, Bologna, 1988
  17. [17] P. Corsini, V. Leoreanu, (2003), Applications of Hyperstructure Theory. Kluwer AP, Dordrecht, Boston.10.1007/978-1-4757-3714-1
  18. [18] I. Cristea, S. Jancic-Rasovic, Composition hyperrings Analele Univ. Ovid-ius Constanta, vol. 21 (2) 2013, pp.81 - 94.10.2478/auom-2013-0024
  19. [19] J. W. P. Hirschfeld, Projective geometries over finite fields, Clarendon Press, Oxford, 1979.
  20. [20] A. J. Hoffman, M. Richardson, Block design games, Canad. J. Math. 13 (1961), 110-12810.4153/CJM-1961-009-8
  21. [21] S. Innamorati, Sulle coalizioni in teoria dei giochi, Ratio Math. 2 (1991), 139-150
  22. [22] S. Innamorati, A. Maturo, On irreducible blocking sets in projective planes, Ratio Math. 2, (1991), 151-155.
  23. [23] S. Innamorati, A. Maturo, On blocking sets of smallest cardinality in the projective plane of order seven, Combinatorics '88, Mediterranean Press, Cosenza, Italy, 1991, 79-96.
  24. [24] S. Innamorati, A. Maturo, The spectrum of minimal blocking sets, Discrete Mathematics, 208/209 (1999) 339-347
  25. [25] S. Innamorati, F. Zuanni, Minimum blocking configurations, J. Geom. 55 (1996) 86-98.10.1007/BF01223035
  26. [26] R. D. Luce, H. Raiffa, Games and Decisions, John Wiley, New York, 1957.
  27. [27] A. Maturo, Cooperative Games, Finite Geometries and Hyperstructures, Ratio Mathematica, 14, 2003, 57-70.
  28. [28] H. Neumann, On some finite non-Desarguesian planes, Arch. Math., 6 (1955), 36-40.10.1007/BF01899210
  29. [29] T. G. Ostrom, F. A. Sherk, Finite projective planes with affine subplanes, Canad. Math. Bull. 7 (1964), 549-560.10.4153/CMB-1964-051-8
  30. [30] G. Oven, Game Theory, Academic Press, New York, 1982
  31. [31] M. Richardson, On finite projective games, Proc. Amer. Math. Soc., 7 (1956), 458-46510.1090/S0002-9939-1956-0079543-2
  32. [32] J. Rosenmuller, Some topics of cooperative game theory, in Modern Applied Math., North Holland, 1982
  33. [33] L. S. Shapley, Simple Games - An outline of the theory, Rand Corporation P-series Report, 1962
  34. [34] J. Singer, A theorem in finite geometry and some application to number theory, Trans. Amer. Math. Soc. 43 (1938), 377-385.10.1090/S0002-9947-1938-1501951-4
  35. [35] T. Szonyi, Note on existence of large minimal blocking sets in Galois planes, Combinatorica 12 (1992), 227-235.10.1007/BF01204725
  36. [36] G. Tallini, Geometrie di incidenza e matroidi, IAC Roma, Quad. Serie III-N.127 (1981), 1-34.
  37. [37] G. Tallini, On blocking sets in finite projective and affine spaces, Ann. of Discrete Math. 37 (1988), 433-450.10.1016/S0167-5060(08)70267-X
  38. [38] J. Von Neumann, O. Morgenstern, Theory of games and economic behaviour, Princeton University Press, Princeton, 1947.
DOI: https://doi.org/10.2478/auom-2014-0015 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 189 - 205
Submitted on: Sep 1, 2013
Accepted on: Nov 1, 2013
Published on: Dec 10, 2014
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 Antonio Maturo, Fabrizio Maturo, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.