Have a personal or library account? Click to login
A new characterization of computable functions Cover

References

  1. [1] J. L. Britton, Integer solutions of systems of quadratic equations, Math. Proc. Cambridge Philos. Soc. 86 (1979), no. 3, 385-389.
  2. [2] M. Cipu, Small solutions to systems of polynomial equations with integer coefficients, An. St. Univ. Ovidius Constanta 19 (2011), no. 2, 89-100, <http://www.emis.de/journals/ASUO/mathematics/pdf2B/Cipu.pdf>, <http://www.anstuocmath.ro/mathematics/pdf23/Cipu.pdf>.
  3. [3] M. Davis, Hilbert's tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), no. 3, 233-269.
  4. [4] L. B. Kuijer, Creating a diophantine description of a r.e. set and on the complexity of such a description, MSc thesis, Faculty of Mathematics and Natural Sciences, University of Groningen, 2010, <http://irs.ub.rug.nl/dbi/4b87adf51B82B>.
  5. [5] Yu. Matiyasevich, Hilbert's tenth problem, MIT Press, Cambridge, MA, 1993.
  6. [6] Th. Skolem, Diophantische Gleichungen, Julius Springer, Berlin, 1938.
  7. [7] A. Tyszka, Conjecturally computable functions which unconditionally do not have any finite-fold Diophantine representation, Inform. Process. Lett. 113 (2013), no. 19-21,719-722.
  8. [8] A. Tyszka, Does there exist an algorithm which to each Diophantine equation assigns an integer which is greater than the modulus of integer solutions, if these solutions form afinite set? Fund. Inform. 125(1): 95-99, 2013.10.3233/FI-2013-854
DOI: https://doi.org/10.2478/auom-2013-0059 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 289 - 294
Published on: Mar 5, 2014
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 Apoloniusz Tyszka, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.