Have a personal or library account? Click to login
On existence of nonassociative LA-ring Cover

References

  1. [1] GAP - Groups, Algorithms and Programming. Version 4.4.12. 2008. http://www.gap-system.org
  2. [2] McCune W. Prover9 and MACE4. http://www.cs.unm.edu/mccune/mace4/
  3. [3] Shah M, Ali A. Some structural properties of AG-group. Int. Math. Fo­rum, 2011, 6(34): 1661-1667
  4. [4] Shah M, Gretton C, Sorge V. Enumerating AG-groups with an introduc­tion to Samarandache AG-groups. Int. Math. Forum 2011, 6(62): 3079­3086
  5. [5] Shah M, Shah T. Some basic properties of LA-rings. Int. Math. Forum, 2011, 6(44): 2195-2199
  6. [6] Shah T, Rehman I. On LA-Rings of finite nonzero functions. Int. J. Con- temp. Math. Sciences, 2010, 5(5): 209-222
  7. [7] Shah T, Raees M, Ali G. On LA-Modules. Int. J. Contemp. Math. Sci­ences, 2011, 6(21): 999-1006
  8. [8] Shah T, Rehman I. On Characterization of LA-ring through some prop­erties of their ideals. Southeast Asian Bulletin of Mathematics, to appear.
  9. [9] Shah T, Kausar N, Rehman I. Intuitionistics fuzzy normal subrings over a nonassociative ring. Analele Stiintifice ale Universitatii Ovidius Con­stanta, 2012, 20: 369-38610.2478/v10309-012-0025-4
DOI: https://doi.org/10.2478/auom-2013-0054 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 223 - 228
Published on: Mar 5, 2014
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 Inayatur-Rehman, Muhammad Shah, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.