Have a personal or library account? Click to login
A duality-type method for the obstacle problem Cover

References

  1. [1] R. Adams. Sobolev spaces, Acad. Press, 1975.
  2. [2] L. Badea. One- and Two-Level Domain Decomposition Methods for Nonlinear Problems. In First International Conference on Parallel, Dis­tributed and Grid Computing for Engineering, Stirlingshire, Scotland, pp. 1 - 18, 2009.
  3. [3] Baiocchi, C., Su un problema di frontiera libera connesso a questioni di idraulica. Ann. Mat. Pura Appl., 92, pp. 107 - 127, 1972.10.1007/BF02417940
  4. [4] V. Barbu, T. Precupanu. Convexity and optimization in Banach spaces, Noordhoff, 1978.
  5. [5] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2011.10.1007/978-0-387-70914-7
  6. [6] Burger, M., Matevosyan, N., Wolfram, M.T. A level set based shape opti­mization method for an elliptic obstacle problem. Math. Models Methods Appl. Sci., 21, no. 4, pp. 619 - 649, 2011.10.1142/S0218202511005155
  7. [7] Duvaut, G., Lions, J.-L. Les inéquations en mécanique et en physique. Travaux et Recherches Mathematiques, No. 21. Dunod, Paris, 1972.
  8. [8] G. Fichera: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei, Memorie (Cl. Sci. fis., mat. e nat.), serie 8, vol. 7, 1964, pp. 91 - 140.
  9. [9] G. Fichera: Boundary value problems of elasticity with unilateral con­straints. Handbuch der Physik, Band VI a/2, Mechanics of Solids II Springer, 1972, pp. 391 - 424.10.1007/978-3-642-69567-4_4
  10. [10] Frehse, J. On the regularity of the solution of a second order variational inequality. Boll. Un. Mat. Ital.(4) 6 , pp. 312 - 315, 1972.
  11. [11] Griesse, R., Kunisch, K. A semi-smooth Newton method for solving el­liptic equations with gradient constraints. M2AN Math. Model. Numer. Anal. 43, no. 2, pp. 209 - 238, 2009.10.1051/m2an:2008049
  12. [12] R. Glowinski. Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984.10.1007/978-3-662-12613-4
  13. [13] Ito, K., Kunisch, K., SemiSmooth Newton Methods For Variational In­equalities Of The First Kind, Mathematical Modelling and Numerical Analysis, Vol. 37, No 1, pp. 41 - 62, 2003.10.1051/m2an:2003021
  14. [14] Kinderlehrer, D., Stampacchia, G. An introduction to variational inequal­ities and their applications. Pure and Applied Mathematics, Academic Press, New York, 1980.
  15. [15] Merlusca, D.R., A duality algorithm for the obstacle problem. (to appear) Annals of the Academy of Romanian Scientists, Vol. 5, 2013.
  16. [16] Murea, C.M., Tiba, D. A direct algorithm in some free boundary prob­lems, BCAM Publications, 2012.
  17. [17] Perez, F.A., Cascon, J.M., Ferragut, L. A Numerical Adaptive Algorithm for the Obstacle Problem. 4th International Conference, Krakow, Poland, June 6-9, 2004, Proceedings, Part II, pp. 130 - 137, 2004.10.1007/978-3-540-24687-9_17
  18. [18] Schaeffer, D.G. A stability theorem for the obstacle problem Advances in Mathematics, Volume 17, Issue 1, pp. 34 - 47, July 1975.10.1016/0001-8708(75)90085-7
  19. [19] Wilmott, P., Howison, S., Dewynne, J. The mathematics of financial derivatives. A student introduction. Cambridge University Press, Cam­bridge, 1995. 10.1017/CBO9780511812545
DOI: https://doi.org/10.2478/auom-2013-0051 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 181 - 196
Published on: Mar 5, 2014
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 Diana Rodica Merlusca, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.