Have a personal or library account? Click to login
Coupled points in ordered generalized metric spaces and application to integro-dierential equations Cover

Coupled points in ordered generalized metric spaces and application to integro-dierential equations

Open Access
|Mar 2014

References

  1. [1] R.P. Agarwal, M.A. El-Gebeily, D. O’Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal.87 (2008) 109-116.10.1080/00036810701556151
  2. [2] A. Amini-Harandi , H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Analysis 72 (2010) 2238 -2242.10.1016/j.na.2009.10.023
  3. [3] I. Altun, H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl. 2010 (2010) 17 pages. Article ID 621469.
  4. [4] H. Aydi, B. Damjanovic, B. Samet, W. Shatanawi Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces, Math. Comput. Modelling, 54 (2011) 2443-2450.
  5. [5] V. Berinde, Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal. TMA 74 (2011) 7347-7355.10.1016/j.na.2011.07.053
  6. [6] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially orderedmetric spaces and applications, Nonlinear Anal. 65 (2006) 1379­1393.
  7. [7] A. Bica, S. Muresan , Periodic solutions for a delay integro-differential equations in biomathematics, RGMIA Res. Report Coll, 6 (2003), 755­761.
  8. [8] A. Bica, S. Muresan, Applications of the Perovs fixed point theorem to delay integro-differential equations, Chap. 3 in Fixed Point Theory and Applications (Y.J. Cho, et al., Eds), Vol. 7, Nova Science Publishers Inc., New York, 2006.
  9. [9] A. Bucur, L. Guran, A. Petrusel, Fixed points for multivalued operators on a set endowed with vector-valued metrics and applications, Fixed Point Theory, 10 (2009) 19-34.
  10. [10] B. S. Choudhury, A. Kundu, A coupled coincidence point result in par­tially ordered metric spaces for compatible mappings, Nonlinear Analysis 73 (2010) 2524-2531.10.1016/j.na.2010.06.025
  11. [11] B.S. Choudhury and P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput. Modelling, 54 (2011) 73-79.
  12. [12] L. Círíc, N. Cakic, M. Rajovic, J.S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2008 (2008) 11 pages. Article ID 131294.
  13. [13] A. D. Filip, A. Petrusel, Fixed point theorems on spaces endowed with vector-valued metrics, Fixed Point Theory and Applications, Vol. 2010, Article ID 281381, 15 pp.10.1155/2010/281381
  14. [14] J. Harjani, B. Lopez, K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal. 74 (2011) 1749-1760.10.1016/j.na.2010.10.047
  15. [15] J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. 71 (2009) 3403 -3410.10.1016/j.na.2009.01.240
  16. [16] S. Hong, Fixed points of multivalued operators in ordered metric spaces with applications, Nonlinear Analysis, 72 (2010) 3929-3942.
  17. [17] E. Karapnar, Couple fixed point theorems for nonlinear contractions in cone metric spaces. Comput. Math. Appl. 59 (2010), 3656-3668.
  18. [18] V. Lakshmikantham, L. Círíc, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009) 4341- 4349.10.1016/j.na.2008.09.020
  19. [19] N. V. Luong, N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal. 74 (2011) 983-992.10.1016/j.na.2010.09.055
  20. [20] N. V. Luong, N. X. Thuan. Coupled fixed point theorems for mixed mono­tone mappings and application to nonlinear integral equations. Comput. Math. Appl. 62 (2011) 4238 - 4248
  21. [21] J.J. Nieto, R.L. Pouso, R. Rodriguez - Lopez, Fixed point theorems in ordered abstract sets, Proc. Amer. Math. Soc. 135 (2007) 2505 -2517.10.1090/S0002-9939-07-08729-1
  22. [22] J.J. Nieto, R. Rodriguez -López, Contractive mapping theorems in par­tially ordered sets and applications to ordinary differential equations, Or­der 22 (2005) 223 - 239.10.1007/s11083-005-9018-5
  23. [23] J.J. Nieto, R. Rodriguez -Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equa­tions, Acta Math. Sin. 23 (2007) 2205- 2212.10.1007/s10114-005-0769-0
  24. [24] D. O’Regan, A. Petrusel, Fixed point theorems for generalized contrac­tions in ordered metric spaces, J. Math. Anal. Appl. 341 (2008) 1241 -1252.10.1016/j.jmaa.2007.11.026
  25. [25] D. O’Regan, R. Precup, Continuation theory for contractions on spaces with two vector-valued metrics, Applicable Analysis, 82 (2003), 131-144.10.1080/0003681031000063784
  26. [26] D. O’Regan, N. Shahzad, R. P. Agarwal, Fixed point theory for gener­alized contractive maps on spaces with vector-valued metrics, in Fixed Point Theory and Applications. Vol. 6, pp. 143149, Nova Science, New York, NY, USA, 2007.
  27. [27] A. Petrusel, I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134 (2006) 411- 418.10.1090/S0002-9939-05-07982-7
  28. [28] A. I. Perov, On the Cauchy problem for a system of ordinary differential equations, Pviblizhen. Met. Reshen. Differ. Uvavn., 2 (1964) 115134.
  29. [29] A.I. Perov, A.V. Kibenko, On a general method to study the boundary value problems, Iz. Acad. Nauk., 30 (1966), 249-264.
  30. [30] R. Precup, The role of matrices that are convergent to zero in the study of semi linear operator systems, Mathematical and Computer Modeling, 49 (2009) 703-708.
  31. [31] M. Turinici, Finite-dimensional vector contractions and their fixed points, Studia Universitatis Babes Bolyai. Mathematica, 35 (2009), 30-42.
  32. [32] I. A. Rus, Principles and applications of the fixed point theory, Dacia, Cluj-Napoca, Romania, 1979.
  33. [33] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435 -1443.10.1090/S0002-9939-03-07220-4
  34. [34] B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal 72 (2010) 4508-4517.10.1016/j.na.2010.02.026
  35. [35] W. Shatanawi, Partially ordered cone metric spaces and coupled fixed point results. Comput. Math. Appl. 60 (2010) 2508-2515.
  36. [36] W. Shatanawi, B. Samet, M. Abbas, Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Mathematical and Computer Modelling. 55 (2012) 680-687.10.1016/j.mcm.2011.08.042
  37. [37] R. S. Varga, Matrix Iterative Analysis, vol. 27 of Springer Series in Com­putational Mathematics, Springer, Berlin, Germany, 2000.10.1007/978-3-642-05156-2
  38. [38] F. Voicu, Fixed-point theorems in vector metric spaces, Studia Universi­tatis Babes Bolyai. Mathematica, 36 (1991) 53-56 (French).
DOI: https://doi.org/10.2478/auom-2013-0050 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 155 - 180
Published on: Mar 5, 2014
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 Nguyen Van Luong, Nguyen Xuan Thuan, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.