Have a personal or library account? Click to login
Radical Classes Closed Under Products Cover

References

  1. [l] J. S. Alin and E. P. Armenđariz, TTF classes over perfect rings, J. Austral. Math. Soc. 11 (1970), 499-503.10.1017/S1446788700007941
  2. [2] D. Allouch, Modules maigres, Thesis, Faculté des Sciences de Montpellier, 1969-70.
  3. [3] D. Allouch, Les modules maigres, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A517-A519.
  4. [4] E. P. Armendariz and J. W. Fisher, Regular P.I. rings, Proc. Amer. Math. Soc. 39 (1973), 247-251.
  5. [5] V. I. Arnautov and M. I. Vodinchar, Radikaly topologicheskikh kolets, Mat. Issled. 3 (1968), No. 2, 31-61.
  6. [6] G. Azumaya, Som,e properties of TTF-classes, Proc. Conference on Or­ders, Group Rings and Related Topics (Ohio State Univ., Columbus, 1972) pp. 72-83. Berlin: Springer, 1973.10.1007/BFb0059260
  7. [7] G. M. Bergman, Homomorphic images of pro-nilpotent algebras, preprint, arXiv: 0912.0020vl [math.RA] 30 Nov 2009
  8. [8] G. M. Bergman, Every module is an inverse limit of injectives, preprint, arXiv: 1104:3173v2 [math.RA] 16 Aug 2011
  9. [9] G. M. Bergman and N. Nahlus, Homomorphisms on infinite direct product algebras, especially Lie algebras, J. Algebra 333 (2011), 67-104.10.1016/j.jalgebra.2011.02.035
  10. [10] G. M. Bergman and N. Nahlus, Linear maps on k1, and homomorphic images of infinite direct product algebras, J. Algebra 356 (2012), 257-274.10.1016/j.jalgebra.2012.01.004
  11. [11] R. Borger and M. Rajagopalan, When do all ring homomorphisms depend on only one co-ordinate?, Arch. Math. 45 (1985), 223-228.10.1007/BF01275573
  12. [12] B. Brown and N. H. McCoy, The maximal regular ideal of a ring, Proc. Amer. Math. Soc. 1 (1950), 165-171.10.1090/S0002-9939-1950-0034757-7
  13. [13] C. Casacuberta, J. L. Rodriguez and D. Scevenels, Singly generated radi­cals associated with varieties of groups Groups St. Andrews 1997 in Bath, I, pp. 202-210. Cambridge: Cambridge Univ. Press, 1999.10.1017/CBO9781107360228.012
  14. [14] A. L. S. Corner and R. Gobel, Radicals commuting with cartesian prod­ucts, Arch. Math. 71 (1998), 341-348.10.1007/s000130050275
  15. [15] R. Dimitrić, Slenderness in abelian categories, Abelian Group Theory (Proc., Honolulu 1982/83), pp. 375-383. Berlin etc.: Springer, 1983.10.1007/978-3-662-21560-9_22
  16. [16] N. Divinsky, D-regularity, Proc. Amer. Math. Soc. 9 (1958), 62-71.
  17. [17] N. Divinsky, Unequivocal rings, Canad. J. Math. 27 (1975), 679-690.10.4153/CJM-1975-076-5
  18. [18] V. Dlab, A characterization of perfect rings, Pacific. J. Math. 33 (1970), 79-88.10.2140/pjm.1970.33.79
  19. [19] M. Dugas and R. Gobel, On radicals and products, Pacific. J. Math. 118 (1985), 79-104.10.2140/pjm.1985.118.79
  20. [20] K. Eda, A characteriztion of'tii-free abelian groups and its application to the Chase radical, Israel J. Math. 60 (1987), 22-30.10.1007/BF02766167
  21. [21] K. Eda, Cardinality restrictions on preradicals, Abelian Group Theory (Proc. 1987 Perth Conference), pp. 277-283. Providence: American Math­ematical Society, 1989.
  22. [22] C. Faith, Lectures on Injective Modules and Quotient Rings, Berlin etc.: Springer, 1967.10.1007/BFb0074319
  23. [23] L. Fuchs, Infinite Abelian Groups Vols. I and II, New York and London: Academic Press, 1970, 1973.
  24. [24] B. J. Gardner, Torsion classes and pure subgroups, Pacific J. Math. 33 (1970), 109-116.10.2140/pjm.1970.33.109
  25. [25] B. J. Gardner, Some closure properties for torsion classes of abelian groups, Pacific. J. Math. 42 (1972), 45-61.10.2140/pjm.1972.42.45
  26. [26] B. J. Gardner, Two notes on radicals of abelian groups, Comment. Math. Univ. Carolinae 13 (1972), 419-430.
  27. [27] B. J. Gardner, Some aspects of T-nilpotence II: Lifting properties over T-nilpotent ideals, Pacific J. Math. 59 (1975), 445-453.10.2140/pjm.1975.59.445
  28. [28] B. J. Gardner, Semi-simple radical classes of algebras and attainability of identities, Pacific. J. Math. 61 (1975), 401-416.10.2140/pjm.1975.61.401
  29. [29] B. J. Gardner, Polynomial identities and radicals, Compositio. Math. 35 (1977), 269-279.
  30. [30] B. J. Gardner, Radical classes of regular rings with artinian primitive images, Pacific. J. Math. 99 (1982), 337-349.10.2140/pjm.1982.99.337
  31. [31] B. J. Gardner, When are radical classes of abelian groups closed under direct products? Algebraic Structures and Applications (Proc. First West­ern Australian Conference on Algebra, 1980), pp. 87-99. New York: Mar­cel Dekker, 1982.
  32. [32] B. J. Gardner, Radicals and varieties, Radical Theory (Proc. Eger, 1982), pp. 93-133. Amsterdam etc.: North-Holland, 1985.
  33. [33] B. J. Gardner, Radical Theory, Harlow: Longman, 1989.
  34. [34] B. J. Gardner, Some cardinality conditions for ring radicals, Quaestiones Math. 15 (1992), 27-37.10.1080/16073606.1992.9631670
  35. [35] B. J. Gardner, On product-closed radical classes of abelian groups, Bulet- inul Acad. §tiin^e Repub. Moldova Matematica 2(30) (1999), 33-52.
  36. [36] B. J. Gardner, Slenderness for rings, Vietnam J. Math. 27 (1999), 345­361.
  37. [37] B. J. Gardner, There isn’t much duality in radical theory, Algebra Discrete Math. 2007, No. 3, 59-66.
  38. [38] B. J. Gardner and R. Wiegandt, Radical Theory of Rings, New York- Basel: Marcel Dekker, 2004.10.1201/9780203913352
  39. [39] J. Gismatullin and A. Muranov, A remark on groups without finite quo­tients, preprint, arXiv:0903.2536v3 [math.GR] 21 Mar 2010 [401 R. Gobel, Kartesische Produkte von Gruppen, Arch. Math. 26 (1975), 454-462.10.1007/BF01229767
  40. [41] R. Gobel, On stout and slender groups, J. Algebra 35 (1975), 39-55.10.1016/0021-8693(75)90034-4
  41. [42] T. L. Goulding and A. H. Ortiz, Structure of semiprime (p, q) radicals, Pacific J. Math. 37 (1971), 97-99.10.2140/pjm.1971.37.97
  42. [43] A. W. Hager and J. J. Madden, Algebraic classes of abelian torsion-free and lattice-ordered groups, Bull. Soc. Math. Grece (NS), 25 (1984), 53-63.
  43. [44] T. E. Hall, Identities for existence varieties of regular semigroups, Bull. Austral. Math. Soc. 40 (1989), 59-77.10.1017/S000497270000349X
  44. [45] A. G. Heinicke, A note on lower radical constructions for associative rings, Canad. Math. Bull. 11 (1968), 23-30.10.4153/CMB-1968-003-x
  45. [46] C. Herrmann and M. Semenova, Existence varieties of regular rings and complemented modular lattices, J. Algebra 314 (2007), 235-251.10.1016/j.jalgebra.2007.01.038
  46. [47] G. Higman, B.H. Neumann and H. Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247-254.10.1112/jlms/s1-24.4.247
  47. [48] A. Hulanicki, The structure of the factor group of the unrestricted sum by the restricted sum of abelian groups, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 77-80.
  48. [49] I. D. Ion, Radicalul limitei proiective de inele asociative, Stud. Cere. Mat. 16 (1964), 1141-1145.
  49. [50] A. M. Ivanov, Radikaly v kategórii vsekh abelevykh grupp bez krucheniya, Sibirsk. Mat. Zh. 20 (1979), 548-555.
  50. [51] J. P. Jans, Some aspects of torsion, Pacific J. Math. 15 (1965),1249-1259.10.2140/pjm.1965.15.1249
  51. [52] T. Jech, Set Theory, New York etc.: Academic Press, 1978.
  52. [53] Y. C. Jeon, N. K. Kim and Y. Lee, On fully idem,potent rings, Bull. Korean Math. Soc. 47 (2010), 715-726.10.4134/BKMS.2010.47.4.715
  53. [54] J. Kad’ourek and M. B. Szendrei, A new approach in the theory of ortho­dox semigroups, Semigroup Forum, 40 (1990), 257-296.10.1007/BF02573274
  54. [55] I. Kaplansky, Infinite Abelian Groups, Ann Arbor: University of Michigan Press, 1969.
  55. [56] E. L. Lady, Slender rings and modules, Pacific J. Math. 49 (1973), 397­406.10.2140/pjm.1973.49.397
  56. [57] N. V. Loi, Essentially closed radical classes, J. Austral. Math. Soc. Ser. A 35 (1983), 132-142.10.1017/S1446788700024812
  57. [58] J. D McKnight and G. L. Musser, Special (p; q) radicals, Canad. J. Math. 24 (1972), 38-44.10.4153/CJM-1972-005-2
  58. [59] G. L. Musser, Linear semiprime (p; q) radicals, Pacific. J. Math. 37 (1971), 749-757.10.2140/pjm.1971.37.749
  59. [60] G. L. Musser, [p; q] radicals - a generalization of the Brown-McCoy radi­cal, Tamkang J. Math. 5 (1974), 21-24.
  60. [61] P. Nicolás and M. Saorin, Classification of split torsion torsionfree triples in module categories, J. Pure. Appl. Algebra 208 (2007), 979-988.10.1016/j.jpaa.2006.04.003
  61. [62] R. J. Nunke, Slender groups, Acta Sci. Math (Szeged) 23 (1962), 67-73.
  62. [63] R. J. Nunke, Purity and subfunctors of the identity, Topics in Abelian Groups (Proc. Symposium New Mexico State University, 1962), pp.121- 171. Chicago: Scott, Foresman, 1963.
  63. [64] J. Olszewski, The Brown-McCoy radical is not closed under products, Comm. Algebra 22 (1994), 117-122.10.1080/00927879408824834
  64. [65] J. D. O’Neill, Slender modules over various rings, Indian J. Pure Appl. Math. 22 (1991), 287-293.
  65. [66] G. K. Pedersen and F. Perera, Inverse limits of rings and multiplier rings, Math. Proc. Cambridge Philos. Soc. 139 (2005), 207-228.10.1017/S0305004105008704
  66. [67] R. E. Phillips, On direct products of generalized solvable groups, Bull. Amer. Math. Soc. 73 (1967), 973- 975.10.1090/S0002-9904-1967-11868-8
  67. [68] S. Pokutta and L. Striingmann, The Chase radical and reduced products, J. Pure Appl. Algebra 211 (2007), 532-540.10.1016/j.jpaa.2007.02.007
  68. [69] R. Raphael, Som,e remarks on regular and strongly regular rings, Canađ. Math. Bull. 17 (1974/75), 709-712.10.4153/CMB-1974-128-x
  69. [70] A. H. Rhemtulla, A problem of bounded expressibility in free products, Proc. Cambridge Philos. Soc. 64 (1968), 573-584.10.1017/S0305004100043231
  70. [71] E. A. Rutter, Torsion theories over semiperfect rings, Proc. Amer. Math. Soc. 34 (1972), 389-395.10.1090/S0002-9939-1972-0297819-X
  71. [72] E. Sgsiada and P. M. Cohn, An example of a simple radical ring, J. Al­gebra 5 (1967), 373-377.10.1016/0021-8693(67)90048-8
  72. [73] H. Schoutens, The Use of Ultraproducts in Commutative Algebra Berlin etc.: Springer, 2010.10.1007/978-3-642-13368-8
  73. [74] S. Shelah, Infinite abelian groups, Whitehead problem and some construc­tions, Israel J. Math. 18 (1974), 243-256.10.1007/BF02757281
  74. [75] A. L. Shmel’kin, Odno svoistvo poluprostykh klassov grupp, Sibirsk. Mat. Zh. 3 (1962), 950-951.
  75. [76] T. Spircu, Radicalul strict regulat al unui inel, Stud. Cere. Mat. 26 (1974), 751-754.
  76. [77] S. Veldsman, Varieties and radicals of near-rings, Results Math. 24 (1993), 356-371. 10.1007/BF03322344
DOI: https://doi.org/10.2478/auom-2013-0047 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 103 - 132
Published on: Mar 5, 2014
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 Barry Gardner, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.