Have a personal or library account? Click to login
Pseudo-contractibility Of Weighted Lp -Algebras Cover

References

  1. [1] F. Abtahi, Lebesgue weighted Lp - algebra on locally compact groups, Acta. Math. Hun- gar., 133/4, (2011), 324-331.10.1007/s10474-011-0097-z
  2. [2] M. Alaghmandan, R. Nasr Isfahani and M. Nemati, On ф-contractibility of the Lebesgue-Fourier algebra of a locally compact group, Arch. Math. (Basel), 95, (2010), 373-379.10.1007/s00013-010-0177-2
  3. [3] A. M. Bruckner, Differentiation of integrals, Amer. Math. Monthly, 78 No. 9 pt. 2, (1971).10.2307/3072337
  4. [4] A. Deitmar and S. Echterhoff, Principles of harmonic analysis, Springer, New York, 2009.
  5. [5] J. Diestel and J. J. Uhl, Jr., Vector measures, AMS, 1977.10.1090/surv/015
  6. [6] D. H. Dunford, Segal algebras and left normed ideals, J. London Math. Soc. (2), 8, (1974), 514-516.10.1112/jlms/s2-8.3.514
  7. [7] R. E. Edwards, The stability of weighted Lebesgue spaces, Trans. Amer. Math. Soc., 93, (1959), 369-394.10.1090/S0002-9947-1959-0112050-4
  8. [8] H. G. Feichtinger, On a class of convolution algebras of functions, Ann. Inst. Fourier (Grenoble), 27, no. 3, (1977), 135-162.10.5802/aif.665
  9. [9] H. G. Feichtinger, Some remarks on Banach convolution algebras of functions (*), Istituto Nazionale di Alta Matematica Symposia Mathematica, Volume XXII, (1977), 453-455.
  10. [10] H. G. Feichtinger, Gewichtsfunktionen auf, lokalkompakten Gruppen, Osterreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 188/8-10, (1979), 451-471.
  11. [11] H. G. Feichtinger, Weighted Lp - spaces and the canonical mapping TH : L1(G) ^ L1(G/H), Bollettino U. M. I. (5)16-B, (1979), 989-999.
  12. [12] H. G. Feichtinger and A. T. Gurkanli, On a family of weighted convolution algebras, Internat. J. Math. Math. Sci., 13/3, (1990), 517-525.10.1155/S0161171290000758
  13. [13] G. Fendler, K. Grchenig, M. Leinert, J. Ludwig and C. Molitor-Braun, Weighted group algebras on groups of polynomial growth, Math. Z., 245/4, (2003), 791-821.10.1007/s00209-003-0571-6
  14. [14] F. Ghahramani and Y. Zhang, Pseudo-amenable and pseudo-contractible Banach al­gebras, Math. Proc. Cambridge Philos. Soc., 142, (2007), no. 1, 111-123.
  15. [15] A. Ya. Helemskii, A. Ya. Helemskii, Banach and Locally Convex Algebras, The Claren­don Press Oxford University Press, New York, 1993.
  16. [16] E. Hewitt and K. Ross, Abstract harmonic analysis I,II, Springer-Verlag, New York, 1970.10.1007/978-3-662-26755-4
  17. [17] Z. Hu, M. S. Monfared and T. Traynor, On character amenable Banach algebras, Studia Math., 193, (2009), no. 1, 53-78.
  18. [18] Yu. N. Kuznetsova, Weighted Lp-Algebras on Groups, Funct. Anal. Appl., 40/3, (2006), 234-236.10.1007/s10688-006-0037-9
  19. [19] Yu. N. Kuznetsova, Invariant weighted algebras Lp(G,w), Mat. Zametki., 84/4, (2008), 567-576.10.4213/mzm3866
  20. [20] H. Reiter, L1-algebras and segal algebras, Lecture Notes in Mathematics, 231, Springer-Verlag, Berlin, 1971.10.1007/BFb0060759
  21. [21] V. Runde, Lectures on amenability, Lecture Notes in Mathematics, 1774, Springer- Verlag, Berlin, 2002.10.1007/b82937
  22. [22] E. Samei, N. Spronk and R. Stokke, Biflatness and pseudo-amenability of Segal alge­bras, Canad. J. Math., 62, (2010), no. 4, 845-869.
  23. [23] Ju. V. Selivanov, Banach Algebras of Small Global Dimension Zero, Uspehi Mat. Nauk., 31, (1976), 227-228.
  24. [24] J. L. Taylor, Homology and cohomology for topological algebras, Advances in Math., 9, (1972), 137-182.10.1016/0001-8708(72)90016-3
  25. [25] J. Wermer, On a class of normed rings, Ark. Mat., 2, (1954), 537-551.10.1007/BF02591228
  26. [26] Y. Zhang, Maximal ideals and the structure of contractible and amenable Banach al­gebras, Bull. Austral. Math. Soc., 62, (2000), 221-226. 10.1017/S0004972700018694
DOI: https://doi.org/10.2478/auom-2013-0038 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 5 - 16
Published on: Mar 5, 2014
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2014 Fatemeh Abtahi, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.