Have a personal or library account? Click to login
Controlled G-Frames and Their G-Multipliers in Hilbert spaces Cover

References

  1. [1] A. Aldroubi, C. Cabrelli, U. Molter, Wavelets on irregular grids with arbitrary dilation matrices and frame atomics for L2 (Rd), Appl. Comput. Harmon. Anal. 17 (2004) 119-140.10.1016/j.acha.2004.03.005
  2. [2] M. L. Arias, M. Pacheco, Bessel fusion multipliers, J. Math. Anal. Appl. 348(2) (2008), 581-588.10.1016/j.jmaa.2008.07.056
  3. [3] P. Balazs, Basic definition and properties of Bessel multipliers, J. Math. Anal. Appl. 325(1) (2007) 571-585.10.1016/j.jmaa.2006.02.012
  4. [4] P. Balazs, J.P. Antoine, A. Grybos, Wighted and Controlled Frames, Int. J. Wavelets Multiresolut. Inf. Process. 8(1) (2010) 109-132.10.1142/S0219691310003377
  5. [5] P. Balazs, W.A. Deutsch, A. Noll, J. Rennison, J. White, STx Pro­grammer Guide, Version: 3.6.2. Acoustics Research Institute, Austrian Academy of Sciences, 2005.
  6. [6] P. Balazs, B. Laback, G. Eckel, W.A. Deutsch, Introducing time-frequency sparsity by removing perceptually irrelevant components using a simple model of simultaneous masking. IEEE Transactions on Audio, Speech and Language Processing, forthcoming:-, 2009.10.1109/TASL.2009.2023164
  7. [7] I. Bogdanova, P. Vandergheynst, J.P. Antoine, L. Jacques, M. Morvidone, Stereographic wavelet frames on the sphere, Applied Comput. Harmon. Anal. (19) (2005) 223-252.10.1016/j.acha.2005.05.001
  8. [8] P.G. Casazza, G. Kutyniok, Frames of Subspaces, Wavelets, Frames and Operator Theory, Amer. Math. Soc. 345 (2004) 87-113.
  9. [9] O. Christensen, Y.C. Eldar, Oblique dual frames and shift-invariant spaces, Appl. Comput. Harmon. Anal. 17 (2004) 48-68.10.1016/j.acha.2003.12.003
  10. [10] Ph. Depalle, R. Kronland-Martinet, B. Torresani, Time-frequency multi­pliers for sound synthesis. In Proceedings of the Wavelet XII conference, SPIE annual Symposium, San Diego, August 2007.10.1117/12.732447
  11. [11] M. Dörfler, B. Torresani, Representation of operators in the time- frequency domain and generalized gabor multipliers. J. Fourier Anal. Appl. (2009).10.1007/s00041-009-9085-x
  12. [12] M. Dorfler, Gabor analysis for a class of signals called music, Ph.D. thesis, University of Vienna, 2003.
  13. [13] Y.C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, J. Fourier Anal. Appl. 9 (2003) 77-96.10.1007/s00041-003-0004-2
  14. [14] H.G. Feichtinger, K. Nowak, A first survey of Gabor multipliers, Birkhauser, Boston, 2003, Chapter 5, 99-128.10.1007/978-1-4612-0133-5_5
  15. [15] A. Fereydooni, A. Safapour, Banach pair frames.
  16. [16] A. Fereydooni, A. Safapour, Pair frames, arXiv:1109.3766v2.
  17. [17] A. Fereydooni, A. Safapour, A. Rahimi, Aadjoint of pair frames, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys 2013.
  18. [18] M. Fornasier, Decomposition of Hilbert spaces: local construction of global frames, Proc. Int. Conf. on Constructive function theory, Varna, B. Bo- janov Ed., DARBA, Sofia, 2003 275-281.
  19. [19] M. Fornasier, Quasi-orthogonal decompsition of structured frames, J. Math. Anal. Appl. 289 (2004) p 180-199.10.1016/j.jmaa.2003.09.041
  20. [20] H. Heuser, Functional analysis, John Wiley, New York, 1982.
  21. [21] S. Li, H. Ogawa, Pseudoframes for subspaces with application, J. Fourier Anal. Appl. 10 (2004) 409-431.10.1007/s00041-004-3039-0
  22. [22] G. Matz, F. Hlawatsch, Linear Time-Frequency Filters: On-line Algo­rithms and Applications, chapter 6 in ’Application in Time-Frequency Signal Processing’, pp. 205-271. eds. A. Papandreou-Suppappola, Boca Raton (FL): CRC Press, 2002.
  23. [23] G. Matz, D. Schafhuber, K. Grochenig, M. Hartmann, F. Hlawatsch, Analysis, Optimization, and Implementation of Low-Interference Wire­less Multicarrier Systems. IEEE Trans. Wireless Comm. 6(4) (2007) 1­11.10.1109/TWC.2007.360393
  24. [24] A. Najati, , M.H. Faroughi, A. Rahimi, G-frames and stability of g-frames in Hilbert spaces, Methods Funct. Anal. Topology. 14 (2008) 271-286.
  25. [25] A. Najati, A. Rahimi, Generalized Frames in Hilbert spaces, Bull. Iranian Math. Soc. 35(1) (2009) 97-109.
  26. [26] P. Oswald, Multilevel Finite Element Approximation: Theory and Appli­cation, Teubner Skripten zur Numerik, Teubner, Stuttgart, 1994.10.1007/978-3-322-91215-2
  27. [27] A. Rahimi, Frames and Their Generalizations in Hilbert and Banach Spaces, LAP Lambert Academic Publishing, 2011.
  28. [28] A. Rahimi, Multipliers of Genralized frames in Hilbert spaces, Bull. Ira­nian Math. Soc. 37(1) (2011) 63-88.
  29. [29] A. Rahimi, P. Balazs, Multipliers of p-Bessel sequences in Banach spaces, Integral Equations Operator Theory, 68(2) (2010) 193-205.10.1007/s00020-010-1814-7
  30. [30] R. Schatten, Norm Ideals of Completely Continious Operators, Springer, Berlin, 1960.10.1007/978-3-642-87652-3
  31. [31] W. Sun, G-frames and G-Riesz bases, J. Math. Anal. Appl. 322(1) (2006) 437-452.10.1016/j.jmaa.2005.09.039
  32. [32] K. Zhuo, Operator Theory in Function Spaces, Marcel Dekker, Inc, 1990.
DOI: https://doi.org/10.2478/auom-2013-0035 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 223 - 236
Published on: Sep 19, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Asghar Rahimi, Abolhassan Fereydooni, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.