Have a personal or library account? Click to login
Rad-⊕-Supplemented Modules Cover

References

  1. [1] Al-Khazzi, I., and Smith, P.F., ”Modules with chain conditions on superfluous submodules, Communications in Algebra, Vol. 19(8), pp. 2331-2351, 1991.
  2. [2] Al-Takhman, K., Lomp, C., and Wisbauer, R., ”τ-complemented and τ-supplemented modules”, Algebra Discrete Math., Vol. 3, pp. 1-16, 2006.10.12988/ija.2007.07065
  3. [3] B¨uy¨uka,sık, E., and Lomp, C., ”On a recent generalization of semiperfect rings”, Bull. Aust. Math. Soc., Vol. 78(2), pp. 317-325, 2008.10.1017/S0004972708000774
  4. [4] B¨uy¨uka,sık, E., Mermut, E., and ¨ Ozdemir S., ”Rad-supplemented modules”, Rend. Sem. Mat. Univ. Padova, Vol. 124, pp. 157-177, 2010.10.4171/RSMUP/124-10
  5. [5] B¨uy¨uka,sık, E., and Demirci, Y., ”Weakly distributive modules. Applications to supplement submodules”, Proc. Indian Acad. Sci.(Math. Sci.), Vol. 120, pp. 525-534, 2010.10.1007/s12044-010-0053-9
  6. [6] Clark, J., Lomp, C., Vanaja, N., and Wisbauer, R., ”Lifting Modules. Supplements and projectivity in module theory”, Frontiers in Mathemat-ics, pp. 406, Birkh¨auser-Basel, 2006.
  7. [7] Ecevit, S,., Ko,san M. T., and Tribak, R., ”Rad--supplemented modules and cofinitely Rad--supplemented modules”, Algebra Colloquium (To appear).
  8. [8] Harmancı, A., Keskin, D., and Smith, P.F., ”On -supplemented modules”, Acta Math. Hungar., Vol. 83(1-2), pp. 161-169, 1999.
  9. [9] C, alı,sıcı, H., and T¨urkmen, E., ”Generalized -supplemented modules”, Algebra Discrete Math., Vol. 10(2), pp. 10-18, 2010.
  10. [10] Idelhadj, A., and Tribak, R., ”Modules for which every submodule has a supplement that is a direct summand”, The Arabian Journal for Sciencesand Engineering, Vol. 25(2C), pp. 179-189, 2000.
  11. [11] Kasch, F., ”Modules and rings”, Academic Press Inc., 1982.
  12. [12] Mohamed, S.H., and M¨uller, B.J. ”Continuous and discrete modules”, London Math. Soc. LNS 147 Cambridge University, pp. 190, Cambridge, 1990.10.1017/CBO9780511600692
  13. [13] Ozcan, A. C, ., Harmacı, A., and Smith, P.F., ”Duo modules”, GlasgowMath. J., Vol. 48, pp. 533-545, 2006.10.1017/S0017089506003260
  14. [14] Sharpe, D. W., and Vamos, P., Injective modules, Cambridge UniversityPress, Cambridge, 1972.
  15. [15] Talebi, Y., Hamzekolaei, A.R.M., and T¨ut¨unc¨u, D.K., ”On Rad-- supplemented modules”, Hadronic J., Vol. 32, pp. 505-512, 2010.
  16. [16] T¨urkmen, E., and Pancar, A., ”Some properties of Rad-supplemented modules”, International Journal of the Physical Sciences, Vol. 6(35), pp. 7904-7909, 2011.
  17. [17] Wisbauer, R., ”Foundations of modules and rings”, Gordon and Breach, 1991.
  18. [18] Xue, W., ”Characterizations of semiperfect and perfect modules”, Publi-cacions Matematiqes, Vol. 40(1), pp. 115-125, 1996.10.5565/PUBLMAT_40196_08
  19. [19] Z¨oschinger, H., ”Komplementierte moduln ¨uber Dedekindringen”, J. Al-gebra, Vol. 29, pp.42-56, 1974.10.1016/0021-8693(74)90109-4
DOI: https://doi.org/10.2478/auom-2013-0015 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 225 - 237
Published on: Jul 30, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Ergül Türkmen, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.