Have a personal or library account? Click to login
Generalized Broughton polynomials and characteristic varieties Cover
Open Access
|Jul 2013

References

  1. [1] Arapura, D., Geometry of cohomology support loci for local systems. I, J. Algebraic Geom., 6 (1997), no. 3, 563-597.
  2. [2] Beauville, A., Annulation du H1 pour les fibrs en droites plats, in: Complex algebraic varieties (Bayreuth, 1990), 1-15, Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992.
  3. [3] Broughton, S. A., Milnor numbers and the topology of polynomial hyper-surfaces, Invent. Math., 92 (1988), no. 2, 217- 241.
  4. [4] Dimca, A., Singularities and Topology of Hypersurfaces, Universitext, Springer, 1992.10.1007/978-1-4612-4404-2
  5. [5] Dimca, A., Sheaves in Topology, Universitext, Springer-Verlag, 2004.10.1007/978-3-642-18868-8
  6. [6] Dimca, A., Characteristic varieties and constructible sheaves, Rend. Lincei Mat. Appl., 18 (2007), no. 4, 365-389.
  7. [7] Dimca, A., On the irreducible components of characteristic varieties, An. Stiin. Univ. ”Ovidius” Constanta Ser. Mat. 15 (2007), no. 1, 67-73.
  8. [8] Dimca, A., Papadima, S. and Suciu, A., Topology and geometry of coho-mology jump loci, Duke Math. J., 148 (2009), no. 3, 405-457.
  9. [9] Green, M. and Lazarsfeld, R., Higher obstructions to deforming coho-mology groups of line bundles, J. Amer. Math. Soc., 4 (1991), no. 1, 87-103.
  10. [10] H`a, H. V. and Lˆe, D. T., Sur la topologie des polyn^omes complexes, Acta Math. Vietnamica, 9 (1984), 21- 32.
  11. [11] Simpson, C., Subspaces of moduli spaces of rank one local systems, Ann. Sci. Ecole Norm. Sup. 26 (1993), no. 3, 361- 401.
  12. [12] Zahid, R., Broughton polynomials and characteristic varieties, Studia Sci. Math. Hungarica, 47 (2010), no.2, 214-222.
DOI: https://doi.org/10.2478/auom-2013-0014 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 215 - 224
Published on: Jul 30, 2013
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Nguyen Tat Thang, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.