Have a personal or library account? Click to login
On iterative fixed point convergence in uniformly convex Banach space and Hilbert space Cover

On iterative fixed point convergence in uniformly convex Banach space and Hilbert space

By: Julee Srivastava and  Neeta Singh  
Open Access
|Jul 2013

References

  1. [1] B. E. Rhoades, Comments on two fixed point iteration methods, J.Math. Anal. Appl., 56 (1976), 741 - 750.10.1016/0022-247X(76)90038-X
  2. [2] B. Panyanak, Mann and Ishikawa iterative process for multivalued map-pings in Banach Spaces, Computers and Mathematics with Applications, 54 (2007), 872-877.10.1016/j.camwa.2007.03.012
  3. [3] H. K. Xu, Inequalities in Banach Spaces with applications, Nonlinear Anal., 16 (1991), 1127-1138.10.1016/0362-546X(91)90200-K
  4. [4] J. Schu, Iterative construction of fixed points of asymptotically nonex-pansive mappings, J. Math. Anal. Appl., 158 (1991), 407-413.10.1016/0022-247X(91)90245-U
  5. [5] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansivemappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178 (1993), 301-308. 10.1006/jmaa.1993.1309
  6. [6] K. P. R. Sastry and G. V. R. Babu, Convergence of Ishikawa iterates fora multivalued mapping with a fixed point, Czechoslovak Mathematical Journal, 55, (2005), 817-826.10.1007/s10587-005-0068-z
  7. [7] L. Ciric, A. Rafiq, N. Cakic and J. S. Ume, Implicit Mann fixed point it-erations for pseudo-contractive mappings, Applied Mathematics Letters, 22 (2009), 581-584.10.1016/j.aml.2008.06.034
  8. [8] M. O. Osilike and D. I. Igbokwe, Weak and strong convergence theoremsfor fixed points of pseudocontractions and solutions of monotone typeoperator equations, Comput. Math. Appl. , 40 (2000), 559-567.10.1016/S0898-1221(00)00179-6
  9. [9] R. P. Agarwal, D. O’Regan and D. R. Sahu, Fixed point theory forLipschitzian-type mappings with Applications, vol. 6, Springer New York, (2009), p. 192.
  10. [10] S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc., 4(1) (1974), 147-150.10.1090/S0002-9939-1974-0336469-5
  11. [11] W. R. Mann, Mean value methods in iterations, Proc. Amer. Math. Soc., 4 (1953), 506-510.10.1090/S0002-9939-1953-0054846-3
  12. [12] Y. Feng and S. Liu, Fixed point theorems for multivalued contractivemappings and multi-valued Caristi type mappings, J. Math. Anal. Appl., 317 (2006), 103-112.10.1016/j.jmaa.2005.12.004
DOI: https://doi.org/10.2478/auom-2013-0010 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 167 - 182
Published on: Jul 30, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Julee Srivastava, Neeta Singh, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.