Have a personal or library account? Click to login
Singular Limits for 2-Dimensional Elliptic Problem with Exponentially Dominated Nonlinearity and a Quadratic Convection Term Cover

Singular Limits for 2-Dimensional Elliptic Problem with Exponentially Dominated Nonlinearity and a Quadratic Convection Term

Open Access
|Jul 2013

References

  1. [1] I. Abid, S. Baraket, T. Ouni and N. Trabelsi, Singular limits solutions for 2-dimensional elliptic problem with exponentially dominated nonlinearitywith nonlinear gradient term, Boundary Value Problems (2011), 2011:10.10.1186/1687-2770-2011-10
  2. [2] S. Baraket, I. Bazarbacha and N. Trabelsi Construction of singular limitsfor four-dimensional elliptic problems with exponentially dominatednonlinearity, Bull. Sci. math. 131 (2007) 670-685.10.1016/j.bulsci.2006.11.002
  3. [3] S. Baraket, I. Ben Omrane and T. Ouni , Singular limits for 2-dimensionalelliptic problem involving exponential with nonlinear gradient term. Nonlinear Differ. Equ. Appl. 18 (2011), 59-78.
  4. [4] S. Baraket, I. Ben. Omrane, T. Ouni and N. Trabelsi, Singular limitssolutions for 2-dimensional elliptic problem with exponentially dominatednonlinearity and singular data, Communications in Contemporary Mathematics Vol. 13, No. 4 (2011) 697-725.
  5. [5] S. Baraket, M. Dammak, T. Ouni and F. Pacard, Singular limits for a 4-dimensional semilinear elliptic problem with exponential nonlinearity, Ann. I. H. Poincar´e - AN 24 (2007) 875-895.
  6. [6] S. Baraket and F. Pacard, Construction of singular limits for a semilinearelliptic equation in dimension 2, Calc. Var. Partial Differential Equations 6 (1998), 1-38.10.1007/s005260050080
  7. [7] S. Baraket and D. Ye, Singular limit solutions for two-dimensional ellipticproblems with exponentionally dominated nonlinearity, Chinese Ann. Math. Ser. B, 22 (2001), 287-296.10.1142/S0252959901000309
  8. [8] D. Bartolucci, C.C. Chen, C. S. Lin, G. Tarantello, Profile of blow-upsolutions to mean field equations with singular data. Comm. Partial Differential Equations 29 (2004), no. 7-8, 1241-1265.
  9. [9] S.Y.A. Chang, On a fourth order differential operator-the Paneitz operatorin conformal geometry, Proceedings conference for the 70th birthday of A.P.Calderon, 4, (2000), 155-165.
  10. [10] C. C. Chen, C. S. Lin, Mean field equations of liouville type with singulardata: sharper estimates. Discrete contin. Dyn. Syst. 28(2010), no.43, 1237-1272.
  11. [11] M. Dammak and T. Ouni, Singular limits for 4-dimensional semilinearelliptic problem with exponential nonlinearity adding a singular sourceterm given by Dirac masses, Differential and Integral Equations 11-12 (2008), 1019-1036.10.57262/die/1355502292
  12. [12] M. Del Pino, M. Kowalczyk and M. Musso, Singular limits in Liouvilletype equations, Calc. Var. Partial Differential Equations 24 (2005), 47-81.10.1007/s00526-004-0314-5
  13. [13] P. Esposito, Blow up solutions for a Liouville equation with singular data, , SIAM J. Math. Anal. 36 (2005), 1310-1345.10.1137/S0036141003430548
  14. [14] P. Esposito, M. Grossi and A. Pistoia, On the existence of Blowing-upsolutions for a mean field equation,Ann. I. H. Poincar´e - AN 22 (2005) 227-257.
  15. [15] J. Liouville, Sur l’´equation aux diff´erences partielles ∂2 log λ∂u∂v± λ 2a2 = 0, J. Math. 18 (1853), 17-72.
  16. [16] R. Mazzeo, Elliptic theory of edge operators I, Comm. Partial Differential Equations 16, 10 (1991) 1616-1664.
  17. [17] R. Melrose, The Atiyah-Patodi-Singer Index Theorem, Res. Notes Math; vol. 4, 1993.10.1201/9781439864609
  18. [18] K. Nangasaki and T. Suzuki, Asymptotic analysis for two-dimensionalelliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptotic Anal. 3 (1990), 173-188.10.3233/ASY-1990-3205
  19. [19] F. Pacard and T. Rivi`ere, Linear and Nonlinear Aspects of Vortices: theGinzburg Landau Model, Progress in Nonlinear Differential Equations, vol. 39, Birk¨auser, 2000.
  20. [20] T. Suzuki, Tow dimensional Emden-Fowler equation with exponentialnonlinearity, Nonlinear Diffusion Equations and their equilibrium states 3, Birk¨auser (1992) 493-512.10.1007/978-1-4612-0393-3_34
  21. [21] G. Tarantello, On Chern-Simons Theory Nonlinear PDE’s and physical modeling: superfluidity, superconductivity and reactive flows, H. Berestycki ed. Kluver Academic Publisher.
  22. [22] J. Wei, D. Ye and F. Zhou, Bubbling solutions for an anisotropic Emden-Fowler equation, Calc. Var. Partial Differential Equations 28 (2) (2007) 217-247.10.1007/s00526-006-0044-y
  23. [23] H. C. Wente, Counter example to a conjecture of H. Hopf, Pacific J.Math.121 (1986), 193-243.10.2140/pjm.1986.121.193
  24. [24] V. H. Weston, On the asymptotique solution of a partial differential equationwith exponential nonlinearity, SIAM J. Math. 9 (1978), 1030-1053.10.1137/0509083
  25. [25] D. Ye and F. Zhou, A generalized two dimensional Emden-Fowler equationwith exponential nonlinearity, Calc. Var. Partial Differential Equations 13 (2001), 141-158.10.1007/PL00009926
  26. [26] C. Zhao, Singular limits in a Liouville-type equation with singularsources, Houston J. Math. 34 (2008), no. 2, 601-621.
  27. [27] C. Zhao, Blowing-up solutions to an anisotropic Emden-Fowler equationwith a singular source, J. Math. Anal. Appl. 342 (2008) 398-422.10.1016/j.jmaa.2007.12.019
DOI: https://doi.org/10.2478/auom-2013-0002 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 19 - 50
Published on: Jul 30, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Sami Baraket, Imen Bazarbacha, Saber Kharrati, Taieb Ouni, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.