Have a personal or library account? Click to login
Differential sandwich theorems of p−valent analytic functions involving a linear operator Cover

Differential sandwich theorems of p−valent analytic functions involving a linear operator

By: M. K. Aouf and  T. M. Seoudy  
Open Access
|Jul 2013

References

  1. [1] R. M. Ali, V. Ravichandran, M. H. Khan and K. G. Subramanian, Differential Sandwich theorems for certain analytic functions, Far East J. Math. Sci. 15(2004), 87-94.
  2. [2] M. K. Aouf, F. M. Al-Oboudi and M. M. Haidan, On some results for λ−spirallike and λ−Robertson functions of complex order, Publ. Instit. Math. Belgrade, 77(2005), no. 91, 93-98.
  3. [3] T. Bulboaca, Classes of frist order differential superordinations, Demonstratio Math. 35(2002), no.2, 287-292.
  4. [4] T. Bulboaca, A class of superordination-preserving integral operators, Indeg. Math. (N.S.) 13(2002), no.3, 301-311.
  5. [5] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
  6. [6] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(1984), 737-745.10.1137/0515057
  7. [7] R. M. El-Ashwah and M. K. Aouf, Differential subordination and superordination for certain subclasses of p-valent functions, Math. Comput. Modelling 51(2010), no. 5-6, 349-360.
  8. [8] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103(1999), 1-13.10.1016/S0377-0427(98)00235-0
  9. [9] S. S. Miller and P. T. Mocanu, Differential Subordinations : Theory and Applications, Series on Monographs and Texbooks in Pure and Appl. Math. No. 225 Marcel Dekker, Inc. New York, 2000.10.1201/9781482289817
  10. [10] S. S. Miller and P. T. Mocanu, Subordinant of differential superordinations, Complex Variables 48 (2003), no. 10, 815-826.
  11. [11] M. Obradovic, M. K. Aouf and S. Owa, On some results for starlike functions of complex order, Publ. Inst. Math. (Beograd) (N.S.) 46 (60), (1989), 79-85.
  12. [12] W. C. Royster, On the univalence of a certain integral, Michigan Math. J. 12 (1965), 385-387.10.1307/mmj/1028999421
  13. [13] H. Saitoh, A linear operator and its applications of first order differential subordinations, Math. Japon., 44(1996), 31-38..
  14. [14] T. N. Shanmugam, V. Ravichandran and S. Owa, On sandwich results for some subclasses of analytic functions involving certain linear operator, Integral Transforms and Spec. Functions, 21(2010), no.1, 1-11.
  15. [15] H. M. Srivastava and P. W. Karlsson, Multiple Gaussion Hypergeometric Series, Halsted Press, Ellis Horwood Limited, Chichester, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1985.
  16. [16] H. M. Srivastava and A. Y. Lashin, Some applications of the Briot- Bouquet differential subordination, J. Inequal. Pure. Appl. Math. 6 (2005), no.2, Art. 41, 1-7. auom-2013-0001
DOI: https://doi.org/10.2478/auom-2013-0001 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 5 - 17
Published on: Jul 30, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 M. K. Aouf, T. M. Seoudy, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.