References
- M. Vhahangwele, L.M. Khathutshelo, Environmental contamination by heavy metals, IntechOpen 32 (2018) 137–144.
- H. Ali, E. Khan, I. Ilahi, Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation, Journal of Chemistry 2019 (2019) 6730305. DOI: 10.1155/2019/6730305
- R.A. Wuana, F.E. Okieimen, Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation, International Scholarly Research Network Ecology 2011 (2011) 1–20. DOI: 10.5402/2011/402647
- J. Briffa, E. Sinagra, R. Blundell, Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon 6 (2020) e04691. DOI: 10.1016/j.heliyon.2020.e04691
- M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals, Interdisciplinary Toxicology 7 (2014) 60–72. DOI: 10.2478/intox-2014-0009
- S. Mitra, A.J. Chakraborty, A.M. Tareq, T. Bin Emran, F. Nainu, A. Khusro, A.M. Idris, M.U. Khandaker, H. Osman, F.A. Alhumaydhi, J. Simal-Gandara, Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity, Journal of King Saud University - Science 34 (2022) 101865. DOI: 10.1016/j.jksus.2022.101865
- Q. Zhou, N. Yang, Y. Li, B. Ren, X. Ding, H. Bian, X. Yao, Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017, Global Ecology and Conservation 22 (2020) e00925. DOI: 10.1016/j.gecco.2020.e00925
- N. Akhtar, M.I. Syakir Ishak, S.A. Bhawani, K. Umar, Various natural and anthropogenic factors responsible for water quality degradation: A review, Water 13 (2021) 2660. DOI: 10.3390/w13192660
- I.V. Muralikrishna, V. Manickam, Industrial wastewater treatment technologies, recycling, and reuse. Environmental Management 13 (2017) 295-336. DOI: 10.1016/b978-0-12-811989-1.00013-0
- N. Munir, M. Jahangeer, A. Bouyahya, N. El Omari, R. Ghchime, A. Balahbib, S. Aboulaghras, Z. Mahmood, M. Akram, S.M.A. Shah, I.N. Mikolaychik, M. Derkho, M. Rebezov, B. Venkidasamy, M. Thiruvengadam, M.A. Shariati, Heavy metal contamination of natural foods is a serious health issue: A review, Sustainability. 14 (2022) 161. DOI: 10.3390/su14010161
- Yi Yuan, B.Liu, H. Liu, Spatial distribution and source identifcation for heavy metals in surface sediments of East Dongting Lake, China, Scientific Reports 12 (2022) 7940. DOI: 10.1038/s41598-022-12148-x
- I.B. Obinnaa, E.C. Ebere, A Review: Water pollution by heavy metal and organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants, Analytical Methods Environmental Chemistry Journal 2 (2019) 5–38. DOI: 10.24200/amecj.v2.i03.66
- L.A.H. Vásquez, F.P. García, J.P. Méndez, A.A. Lass-man, E.M.O. Sánchez, Artificial wetlands and floating islands: Use of macrophytes, South Florida Journal of Development 3 (2022) 476–498. DOI: 10.46932/sfjdv3n1-036
- J. Li, H. Yu, Y. Luan, Meta-analysis of the copper, zinc, and cadmium absorption capacities of aquatic plants in heavy metal-polluted water, International Journal of Environmental Research and Public Health. 12 (2015) 14958–14973. DOI: 10.3390/ijerph121214959
- S. Khan, I. Ahmad, M.T. Shah, S. Rehman, A. Khaliq, Use of constructed wetland for the removal of heavy metals from industrial wastewater, Journal of Environmental Management 90 (2009) 3451–3457. DOI: 10.1016/j.jenvman.2009.05.026
- A. Guittonny-Philippe, V. Masotti, P. Höhener, J.L. Boudenne, J. Viglione, I. Laffont-Schwob, Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: A review to overcome obstacles and suggest potential solutions, Environment International 64 (2014) 1–16. DOI: 10.1016/j.envint.2013.11.016
- E. Sanmuga Priya, P. Senthamil Selvan, Water hyacinth (Eichhornia crassipes) – An efficient and economic adsorbent for textile effluent treatment – A review, Arabian Journal of Chemistry 10 (2017) S3548–S3558. DOI: 10.1016/j.arabjc.2014.03.002
- C. Mahamadi, Water hyacinth as a biosorbent: A review, African Journal of Environmental Science and Technology 5 (2012) 1137–1145. DOI: 10.5897/ajestx11.007
- J.A. Coetzee, R.W. Jones, M.P. Hill, Water hyacinth, Eichhornia crassipes (Pontederiaceae), reduces benthic macroinvertebrate diversity in a protected subtropical lake in South Africa, Biodiversity Conservation 23 (2014) 1319–1330. DOI: 10.1007/s10531-014-0667-9
- M. Shah, H.N. Hashmi, A. Ali, A.R. Ghumman, Performance assessment of aquatic macrophytes for treatment of municipal wastewater, Journal of Environmental Health, Science and Engineering 12 (2014) 1–12. DOI: 10.1186/2052-336X-12-106
- J.L. Jones, R.O. Jenkins, P.I. Haris, Extending the geographic reach of the water hyacinth plant in removal of heavy metals from a temperate Northern Hemisphere river, Scientific Reports 8 (2018) 11071. DOI: 10.1038/s41598-018-29387-6
- M. Bilal, T. Rasheed, J.E. Sosa-Hernández, A. Raza, F. Nabeel, H.M.N. Iqbal, Biosorption: An interplay between marine algae and potentially toxic elements - A review, Marine Drugs 16 (2018) 65. DOI: 10.3390/md16020065
- J. Adusei-Gyamfi, B. Ouddane, L. Rietveld, J.P. Cornard, J. Criquet, Natural organic matter-cations complexation and its impact on water treatment: A critical review, Water Research 160 (2019) 130–147. DOI: 10.1016/j.watres.2019.05.064
- A. Yan, Y. Wang, S.N. Tan, M.L. Mohd Yusof, S. Ghosh, Z. Chen, Phytoremediation: A promising approach for revegetation of heavy metal-polluted land, Frontiers in Plant Science 11 (2020) 1–15. DOI: 10.3389/fpls.2020.00359
- A. Saravanan, P.S. Kumar, R. V. Hemavathy, S. Jeevanantham, P. Harikumar, G. Priyanka, D.R.A. Devakirubai, A comprehensive review on sources, analysis and toxicity of environmental pollutants and its removal methods from water environment, Science of the Total Environment 812 (2022) 152456. DOI: 10.1016/j.scitotenv.2021.152456
- T. Mahmood, S.A. Malik, S.T. Hussain, Biosorption and recovery of heavy metals from aqueous solutions by Eichhornia crassipes (water hyacinth) ash, Bioresources 5 (2010) 1244–1256.
- B.B. Mathew, M. Jaishankar, V.G. Biju, Krishnamurthy Nideghatta Beeregowda, Role of bioadsorbents in reducing toxic metals, Journal of Toxicology 2016 (2016). DOI: 10.1155/2016/4369604
- Z. Al-Qodah, M.A. Yahya, M. Al-Shannag, On the performance of bioadsorption processes for heavy metal ions removal by low-cost agricultural and natural by-products bioadsorbent: A review, Desalination and Water Treatment 85 (2017) 339–357. DOI: 10.5004/dwt.2017.21256
- S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review, Sustainable Materials and Technologies 9 (2016) 10–40. DOI: 10.1016/j.susmat.2016.06.002
- A.T. Huynh, Y.C. Chen, B.N.T. Tran, A small-scale study on removal of heavy metals from contaminated water using water hyacinth, Processes 9 (2021) 1–9. DOI: 10.3390/pr9101802
- H.A. Hassoon, A.M. Najem, Removal of some traces heavy metals from aqueous solutions by water hyacinth leaves powder, Iraqi Journal of Science 58 (2017) 611–618.
- D. Hemalatha, R.M. Narayanan, S. Sanchitha, Removal of zinc and chromium from industrial wastewater using water hyacinth (E. crassipes) petiole, leaves and root powder: Equilibrium study, Materials Today Proceeding 43 (2020) 1834–1838. DOI: 10.1016/j.matpr.2020.10.725.
- G.O. Tesi, O. Ejeromedoghene, B. Kpomah, A.R. Ipeaiyeda, Sorption of Mn(II) ions from wastewater using dried and blended water hyacinth (Eichhornia crassipes) roots: Adsorption-desorption studies and kinetics, Journal of the Turkish Chemical Society Section A: Chemistry 11 (2024) 415-424.
- A.R. Ipeaiyeda, G.O. Tesi, Sorption and desorption studies on toxic metals from brewery effluent using eggshell as adsorbent, Advances in Natural Science 7 (2014) 15–24. DOI: 10.3968/5394
- H.D. Utomo, K.X.D. Tan, Z.Y.D. Choong, J.J. Yu, J.J. Ong, Z.B. Lim, Biosorption of heavy metal by algae biomass in surface water, Journal of Environmental Protection 07 (2016) 1547–1560. DOI: 10.4236/jep.2016.711128
- H. Shokry, M. Elkady, E. Salama, Eco-friendly magnetic activated carbon nano-hybrid for facile oil spills separation, Scientific Reports 10 (2020) 1–18. DOI: 10.1038/s41598-020-67231-y
- J.M. Zhou, Z.C. Jiang, X.Q. Qin, L.K. Zhang, Q.B. Huang, G.L. Xu, Effects and mechanisms of calcium ion addition on lead removal from water by Eichhornia crassipes, International Journal of Environmental Research and Public Health 17 (2020) 928. DOI: 10.3390/ijerph17030928
- J. Weißpflog, A. Gündel, D. Vehlow, C. Steinbach, M. Müller, R. Boldt, S. Schwarz, D. Schwarz, Solubility and selectivity effects of the anion on the adsorption of different heavy metal ions onto chitosan, Molecules 25 (2020) 2482. DOI: 10.3390/molecules25112482
- A.M. Najem, Evaluation the biosorption capacity of water hyacinth (Eichhornia crassipes) root for some heavy metals, Iraqi Journal of Science 56 (2015) 2846–2852.
- B.S. Smolyakov, Uptake of Zn, Cu, Pb, and Cd by water hyacinth in the initial stage of water system remediation, Applied Geochemistry 27 (2012) 1214–1219. DOI: 10.1016/j.apgeochem.2012.02. 027
- D.M. Hammad, Cu, Ni and Zn phytoremediation and translocation by water hyacinth plant at different aquatic environments, Australia Journal of Basic and Applied Sciences 5 (2011) 11–22.
- H. Singh, S. Choden, Comparison of adsorption behaviour and kinetic modeling of bio-waste materials using basic dye as adsorbate, Indian Journal of Chemical Technology 21 (2014) 359–398.
- I. Michalak, K. Chojnacka, A. Witek-Krowiak, State of the art for the biosorption process - A review, Applied Biochemistry and Biotechnology 170 (2013) 1389–1416. DOI: 10.1007/s12010-013-0269-0
- E. Torres, Biosorption: A review of the latest advances, Processes 8 (2020) 1–23. DOI: 10.3390/pr8121584
- W. Jiang, Y. Hu, Z. Zhu, Biosorption characteristic and cytoprotective effect of Pb2+, Cu2+ and Cd2+ by a novel polysaccharide from Zingiber strioatum, Molecules. 27 (2022) 8036. DOI: 10.3390/molecules27228036
- F. Gorzin, M.M. Bahri Rasht Abadi, Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies, Adsorption Science and Technology. 36 (2018) 149–169. DOI: 10.1177/0263617416686976
- P.E. Ohale, C.E. Onu, N.J. Ohale, S.N. Oba, Adsorptive kinetics, isotherm and thermodynamic analysis of fishpond effluent coagulation using chitin derived coagulant from waste Brachyura shell, Chemical Engineering Journal Advances 4 (2020) 100036. DOI: 10.1016/j.ceja.2020.100036
- T.G. Ambaye, M. Vaccari, E.D. van Hullebusch, A. Amrane, S. Rtimi, Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater, International Journal of Environmental Sciences and Technology 18 (2021) 3273–3294. DOI: 10.1007/s13762-020-03060-w
- M. Matouq, N. Jildeh, M. Qtaishat, M. Hindiyeh, M.Q. Al Syouf, The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods, Journal of Environmental Chemical Engineering 3 (2015) 775–784. DOI: 10.1016/j.jece.2015.03.027
- J.C. Zheng, H.Q. Liu, H.M. Feng, W.W. Li, M.H.W. Lam, P.K.S. Lam, H.Q. Yu, Competitive sorption of heavy metals by water hyacinth roots, Environmental Pollution 219 (2016) 837–845. DOI: 10.1016/j.envpol.2016.08.001
- D. Kołodyńska, J. Krukowska, P. Thomas, Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon, Chemical Engineering Journal 307 (2017) 353–363. DOI: 10.1016/j.cej.2016.08.088
- G.M. Al-Senani, F.F. Al-Fawzan, Adsorption study of heavy metal ions from aqueous solution by nanoparticle of wild herbs, Egyptian Journal of Aquatic Research. 44 (2018) 187–194. DOI: 10.1016/j.ejar.2018.07.006
- M. Zhao, Y. Dai, M. Zhang, C. Feng, B. Qin, W. Zhang, N. Zhao, Y. Li, Z. Ni, Z. Xu, D.C.W. Tsang, R. Qiu, Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies, Science of the Total Environment 717 (2020) 136894. DOI: 10.1016/j.scitotenv.2020.136894
- K.S. Padmavathy, G. Madhu, P.V. Haseena, A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr (VI)) from wastewater by magnetite nanoparticles, Procedia Technology 24 (2016) 585–594. DOI: 10.1016/j.protcy.2016.05.127
- Q. Wang, Y. Wang, Z. Yang, W. Han, L. Yuan, L. Zhang, X. Huang, Efficient removal of Pb(II) and Cd(II) from aqueous solutions by mango seed biosorbent, Chemical Engineering Journal Advances 11 (2022) 100295. DOI: 10.1016/j.ceja.2022.100295
- H. Tounsadi, A. Khalidi, M. Abdennouri, N. Barka, Biosorption potential of Diplotaxis harra and Glebionis coronaria L. biomasses for the removal of Cd(II) and Co(II) from aqueous solutions, Journal of Environmental and Chemical Engineering 3 (2015) 822–830. DOI: 10.1016/j.jece.2015.03.022
- E.D. Revellame, D.L. Fortela, W. Sharp, R. Hernandez, M.E. Zappi, Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review, Cleaner Engineering and Technology 1 (2020) 100032. DOI: 10.1016/j.clet.2020.100032
- D.L. Gómez-Aguilar, J.A. Esteban-Muñoz, J.P. Rodríguez-Miranda, D. Baracaldo-Guzmán, O.J. Salcedo-Parra, Desorption of coffee pulp used as an adsorbent material for Cr(III and VI) ions in synthetic wastewater: A preliminary study, Molecules 27 (2022) 2170. DOI: 10.3390/molecules27072170.