Have a personal or library account? Click to login
In silico prediction of physicochemical properties and drug-likeness of omega-3 fatty acids Cover

In silico prediction of physicochemical properties and drug-likeness of omega-3 fatty acids

Open Access
|Oct 2024

References

  1. L. Pottel, M. Lycke, T. Boterberg, I. Foubert, H. Pottel, F. Duprez, L. Goethals, R. Debruyne, Omega-3 fatty acids: physiology, biological sources and potential applications in supportive cancer care, Phytochemistry Reviews 13 (2013) 223–244.
  2. C. Calder, Omega-3 fatty acids and inflammatory processes, Nutrients 2 (2010) 355-374.
  3. A. Simopoulos, Omega-3 fatty acids in inflammation and autoimmune diseases, Journal of the American College of Nutrition 21 (2002) 495–505.
  4. C. Schacky, W.S. Harris, Cardiovascular benefits of omega-3 fatty acids, Cardiovascular Research 73 (2007) 310–315.
  5. G. Parker, N.A. Gibson, H. Brotchie, G. Heruc, A.M. Rees, D. Hadzi-Pavlovic, Omega-3 fatty acids and mood disorders, American Journal of Psychiatry 163 (2006) 969–978.
  6. J.A. Reiffel, A. McDonald, antiarrhythmic effects of omega-3 fatty acids, The American Journal of Cardiology 98 (2006) 50-60.
  7. G. Fernandes, J.T. Venkatraman, Role of omega-3 fatty acids in health and disease, Nutrition Research 13 (1993) S19-S45.
  8. B.M. Yashodhara, S. Umakanth, J.M. Pappachan, S.K. Bhat, R. Kamath, B.H. Choo, Omega-3 fatty acids: a comprehensive review of their role in health and disease, Postgraduate Medical Journal 85 (2009) 84–90.
  9. A. Bimbo, Sources of omega-3 fatty acids, in: Food Enrichment with Omega-3 Fatty Acids, Eds.: C. Jacobsen, N.S. Nielsen, A.F. Horn, A.D.M. Sørensen, Woodhead Publishing, Sawston, UK, pp. 27-107 (2013).
  10. E. Mateev, A. Irfan, A. Mateeva, M. Kondeva-Burdina, M. Georgieva, A. Zlatkov, In silico and in vitro screening of pyrrole-based hydrazidehydrazones as novel acetylcholinesterase inhibitors, Pharmacia 71 (2024) 1-7.
  11. G. Sliwoski, S. Kothiwale, J. Meiler, E.W. Lowe Jr., E.L. Barker, computational methods in drug discovery, Pharmacological Reviews 66 (2014) 334-395.
  12. T.L. Šestić, J.J. Ajduković, M.A. Marinović, E.T. Petri, M. Savić, In silico ADMET analysis of the A-, B- and D-modified androstane derivatives with potential anticancer effects, Steroids 189 (2023) 109147.
  13. A. Isvoran, A.A. Ciorsac, V. Ostafe, ADME-Tox profiling of some low molecular weight water soluble chitosan derivatives, ADMET & DMPK 5 (2017) 192–200.
  14. D. Dascălu, D.L. Roman, M. Filip, A.A. Ciorsac, V. Ostafe, A. Isvoran, Solubility and ADMET profiles of short oligomers of lactic acid, ADMET & DMPK 8 (2020) 425-436.
  15. D.L. Roman, M. Roman, C. Som, M. Schmutz, E. Hernandez, Wick, T. Casalini, G. Perale, V. Ostafe, A. Isvoran, Computational Assessment of the Pharmacological Profiles of Degradation Products of Chitosan, Frontiers in Bioengineering and Biotechnology, 7 (2019), Article 214
  16. D.L. Roman, A. Isvoran, M. Filip, V. Ostafe, M. Zinn, In silico assessment of pharmacological profile of low molecular weight oligohydroxyalkanoates, Frontiers in Bioengineering and Biotechnology, 8 (2020), Article 584010
  17. M. Roman, D.L. Roman, V. Ostafe, A. Ciorsac, A. Isvoran, Computational assessment of pharmacokinetics and biological effects of some anabolic and androgen steroids, Pharmaceutical Research 35 (2018) 41.
  18. S. Mishra, R. Dahima, In vitro ADME studies of tug-891, a gpr-120 inhibitor using Swiss ADME predictor, Journal of Drug Delivery and Therapeutics 9 (2019) 266-369.
  19. J.G. Mvondo, A. Matondo, D.T. Mawete, S.M.N. Bambi, B.M. Mbala, O. Lohohola, In silico ADME/T properties of quinine derivatives using SwissADME and pkCSM Webservers, International Journal of Tropical Disease & Health 42 (2021) 1-12.
  20. D. Ranjith, C. Ravikumar, SwissADME predictions of pharmacokinetics and drug-likeness properties of small molecules present in Ipomoea mauritiana Jacq, Journal of Pharmacognosy and Phytochemistry 8 (5) (2019) 2063-2073
  21. A. Daina, O. Michielin, V. Zoete, SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules, Scientific Reports 7 (2017) 42717.
  22. C.A. Lipinski, Lead- and drug-like compounds: the rule-of-five revolution, Drug Discovery Today: Technologies 1 (2004) 337-341
  23. C.A. Lipinski, F. Lombardo, B.W. Dominy, J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Advanced Drug Delivery Reviews 46 (2001) 3–26.
  24. A.K. Ghose, V.N. Viswanadhan, J.J. Wendoloski, A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases, Journal of Combinatorial Chemistry 1 (1999) 55–68.
  25. D.F. Veber, S.R. Johnson, H.Y. Cheng, B.R. Smith, K.W. Ward, K.D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, Journal of Medicinal Chemistry 45 (2002) 2615–2623.
  26. W.J. Egan, K.M. Merz, J.J. Baldwin, Prediction of drug absorption using multivariate statistics, Journal of Medicinal Chemistry 43 (2000) 3867–3877.
  27. I. Muegge, S. L. Heald and D. Brittelli, Simple Selection Criteria for Drug-like Chemical Matter, Journal of Medicinal Chemistry 44 (2001) 1841–1846
  28. G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, T. Hou, D. Cao, ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties, Nucleic Acids Research 49 (2021) W5–W14.
  29. J. Dong, N. Wang, Z. Yao, L. Zhang, Y. Cheng, D. Ouyang, A. Lu, D. Cao, ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database, Journal of Cheminformatics 10 (2018) 29
  30. L. Fu, S. Shi, J. Yi, N. Wang, Y. He, Z. Wu, J. Peng, Y. Deng, W. Wang, C. Wu, A. Lyu, X. Zeng, W. Zhao, T. Hou, D. Cao, ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support, Nucleic Acids Research 52 (2024) W422–W431.
  31. L.G. Ferreira, A.D. Andricopulo, ADMET modeling approaches in drug discovery, Drug Discovery Today 24 (2019) 1157-1165.
  32. J.A. Arnott, S.L. Planey, The influence of lipophilicity in drug discovery and design, Expert Opinion on Drug Discovery 70 (2012) 863–875.
  33. M.Q. Xua, T. Zhong, X. Yao, Z.Y. Li, H. Li, J.R. Wang, Z.H. Feng, X. Zhang, Effect of XlogP and Hansen solubility parameters on the prediction of small molecule modified docetaxel, doxorubicin and irinotecan conjugates forming stable nanoparticles, Drug Delivery 28 (2021) 1603-1615.
  34. S.A. Wildman, G.M. Crippen, Prediction of physicochemical parameters by atomic contributions, Journal of Chemical Information & Computer Sciences 39 (1999) 868–873.
  35. I. Moriguchi, S. Hirono, K. Liu, I. Nakagomi, Y. Matsushita, Simple method of calculating octanol/water partition coefficient, Chemical and Pharmaceutical Bulletin 40 (1992) 127-130.
  36. I. Moriguchi, S. Hirono, I. Nakagome, H. Hirano, Comparison of reliability of log p values for drugs calculated by several methods, Chemical and Pharmaceutical Bulletin 42 (1994) 976-978.
  37. J.S. Delaney, ESOL:  Estimating aqueous solubility directly from molecular structure, Journal of Chemical Information & Computer Sciences 44 (2004) 1000–1005.
  38. J. Ali, Camilleri, M.B. Brown, A.J. Hutt, S.B. Kirton, Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area, Journal of Chemical Information and Modeling 52 (2012) 420–428.
  39. S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E.E. Bolton, PubChem in 2021: new data content and improved web interfaces, Nucleic Acids Research 8 (2021) 1388-1395.
  40. National Toxicology Program, Institute of Environmental Health Sciences, National Institutes of Health (NTP), National Toxicology Program Chemical Repository Database (1992).
  41. W.M. Meylan, H. Howard, R.S. Boethling, Improved method for estimating water solubility from octanol/water partition coefficient, Environmental Toxicology and Chemistry 15 (1996) 100-106.
  42. J.A. Arnott, S.L. Planey, The influence of lipophilicity in drug discovery and design, Expert Opinion on Drug Discovery 7 (2012) 863-875.
  43. L.G. Herbette, ‘Pharmacokinetic’ and ‘pharmacodynamic’ design of lipophilic drugs based on a structural model for drug interactions with biological membranes, Pesticide Science 35 (1992) 363-368.
  44. N.F. Krebs, Bioavailability of dietary supplements and impact of physiologic state: infants, children and adolescents, The Journal of Nutrition 131 (2001) 1351S-1354S.
  45. L.D. Hughes, D.S. Palmer, F. Nigsch, J.B.O. Mitchell, Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P, Journal of Chemical Information and Modeling 48 (2008) 220-232.
  46. I. Yusof, M.D. Segall, Considering the impact drug-like properties have on the chance of success, Drug Discovery Today 18 (2013) 659-666.
  47. D.S. Wishart, Improving early drug discovery through ADME modelling, Drugs in R&D 8 (2007) 349–362.
DOI: https://doi.org/10.2478/auoc-2024-0016 | Journal eISSN: 2286-038X | Journal ISSN: 1583-2430
Language: English
Page range: 118 - 125
Submitted on: Jul 3, 2024
|
Accepted on: Oct 5, 2024
|
Published on: Oct 18, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2024 Yordanka Staneva, Ivelin Iliev, Svetlana Georgieva, Albena Merdjanova, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.