Have a personal or library account? Click to login
Thermal-hydraulic analysis of a louver fin-and-tube radiator for a liquid–cooled PEMFC stack system Cover

Thermal-hydraulic analysis of a louver fin-and-tube radiator for a liquid–cooled PEMFC stack system

By: Viorel Ionescu  
Open Access
|Sep 2024

References

  1. A. González, O. Ruz, E. Castillo, Numerical study of the fluid dynamics and heat transfer for shear-thinning nanofluids in a micro pin-fin heat sink, Case Studies in Thermal Engineering 28 (2021) 101635-101662. Doi: 10.1016/j.csite.2021.101635
  2. Q. Zuoqin, W. Qiang, C. Junlin, D. Jun, Simulation investigation on inlet velocity profile and configuration parameters of louver fin, Applied Thermal Engineering 138 (2018) 173–182. Doi: 10.1016/j.applthermaleng.2018.02.009
  3. A. Sadeghianjahromi, C.C. Wang, Heat transfer enhancement in fin-and tube heat exchangers – a review on different mechanisms, Renewable and Sustainable Energy Reviews 137 (2021) 110470-110512. Doi: 10.1016/j.rser.2020.110470
  4. S.H. Habibian, A.M.A. Abolmaali, Numerical investigation of the effects of fin shape, antifreeze and nanoparticles on the performance of compact finned-tube heat exchangers for automobile radiator, Applied Thermal Engineering 133 (2018) 248–260. Doi: 10.1016/j.applthermaleng.2018.01.032
  5. C.C. Wang, K.Y. Chen, J.S. Liaw, C.Y. Tseng, An experimental study of the air-side performance of fin-and-tube heat exchangers having plain, louver, and semi-dimple vortex generator configuration, International Journal of Heat and Mass Transfer 80 (2015) 281–287. Doi: 10.1016/j.ijheatmasstransfer.2014.09.030
  6. J.Y. Jang, C.C. Chen, Optimization of louvered-fin heat exchanger with variable louver angles, Applied Thermal Engineering 91 (2015) 138–150. Doi: 10.1016/j.applthermaleng.2015.08.009
  7. J.S. Park, J. Kim, K.S. Lee, Thermal and drainage performance of a louvered fin heat exchanger according to heat exchanger inclination angle under frosting and defrosting conditions, International Journal of Heat and Mass Transfer 108 (2017) 1335–1339. Doi: 10.1016/j.ijheatmasstransfer.2017.01.043
  8. A. Okbaz, A. Pınarbas, A.B. Olcay, Experimental investigation of effect of different tube row-numbers, fin pitches and operating conditions on thermal and hydraulic performances of louvered and wavy finned heat exchangers, International Journal of Thermal Sciences 151 (2020) 106256. Doi: 10.1016/j.ijthermalsci.2019.106256
  9. Z. Qi, J. Chen, Z. Chen, Parametric study on the performance of a heat exchanger with corrugated louvered fins, Applied Thermal Engineering 27 (2007) 539–544. Doi: 10.1016/j.applthermaleng.2006.06.015
  10. A. Okbaz, A. Pınarbası, A.B. Olcay, M.H. Aksoy, An experimental, computational and flow visualization study on the air-side thermal and hydraulic performance of louvered fin and round tube heat exchangers, International Journal of Heat and Mass Transfer 121 (2018) 153–169. Doi: 10.1016/j.ijheatmasstransfer.2017.12.127
  11. P. Karthik, V. Kumaresan, R. Velraj, Experimental and parametric studies of a louvered fin and flat tube compact heat exchanger using computational fluid dynamics, Alexandria Engineering Journal 54 (2015) 905-915. Doi: 10.1016/j.aej.2015.08.003
  12. J. Dong, J. Chen, Z. Chen, W. Zhang, Y. Zhou, Heat transfer and pressure drop correlations for the multi-louvered fin compact heat exchangers, Energy Conversion and Management. 48 (2007) 1506–1515. Doi: 10.1016/j.enconman.2006.11.023
  13. D. Ryan, J. Shang, Q. Quillivic, B. Porter, Performance and energy efficiency testing of a lightweight FCEV hybrid vehicle, European Electrical Vehicle Congress (EEVC), Brussels, Belgium, 3rd – 5th December 2014, 1 – 12.
  14. K. Ikeya, K. Hirota, Y. Takada, T. Eguchi, K. Mizutani, T. Ohta, Development and evaluation of air-cooled fuel cell scooter, SAE Technical Paper 2011-32-0644 (2011) 1-9. Doi: 10.4271/2011-32-0644.
  15. A. Fly, R.H. Thring, A comparison of evaporative and liquid cooling methods for fuel cell vehicles, International Journal of Hydrogen Energy 41 (2016) 14217 – 14229. Doi: 10.1016/j.ijhydene.2016.06.089
  16. L.B. Erbay, B. Doğan, M.M. Öztürk, in: S.M.S. Murshed and M.M. Lopes (Eds), Chapter 4: Comprehensive Study of Heat Exchangers with Louvered Fins, Heat Exchangers - Advanced Features and Applications, InTech (2017) 62 – 92. Doi: 10.5772/66472
  17. D. Jung, D.N. Assanis, Numerical modeling of cross flow compact heat exchanger with louvered fins using thermal resistance concept, SAE Technical Paper 2006-01-0726 (2006) 1-10. Doi: 10.4271/2006-01-0726.
  18. V. Gnielinski, G1 heat transfer in pipe flow, VDI Heat Atlas. VDI-Buch. Springer, Berlin, Heidelberg, 2010. Doi: 10.1007/978-3-540-77877-6_34
  19. Z. Said, M.E.H. Assad, A.A. Hachicha, E. Bellos, M.A. Abdelkareem, D.Z. Alazaizeh, B.A.A. Yousef, Enhancing the performance of automotive radiators using nanofluids, Renewable and Sustainable Energy Reviews 112 (2019) 183–194. Doi: 10.1016/j.rser.2019.05.052
  20. H. Kwon, S. Park, J. Choi, J. Han, A Study on the Optimization of the Louver Fin Heat Exchanger for Fuel Cell Electric Vehicle Using Genetic Algorithm, Applied Science 13 (2023) 2539-2553. Doi: 10.3390/app13042539
  21. Y.-J. Chang, C.-C. Wang, A Generalized Heat transfer Correlation for Louver Fin Geometry, International Journal of Heat and Mass Transfer 40 (1997) 533-544. Doi: 10.1016/0017-9310(96)00116-0
  22. H.C. Kang, G.W. Jun, Heat Transfer and Flow Resistance Characteristics of Louver Fin Geometry for Automobile Applications, Journal of Heat Transfer 133 (2011) 101802 – 101808. Doi: 10.1115/1.4004169
  23. R.K. Shah, D.P. Sekulic, Fundamentals of heat exchanger design. John Wiley & Sons Inc., New Jersey, 2003.
  24. Y.J. Chang, K.C. Hsu, Y.T. Lin, C.C. Wang, A generalized friction correlation for louver fin geometry, International Journal of Heat and Mass Transfer 12 (2000) 2237–2243. Doi: 10.1016/0017-9310(96)00116-0
  25. W. Kays, A.L. London, Compact Heat Exchangers, 3rd Ed., McGraw – Hill Book Company, New York, 1984, p.15.
  26. M.H. Kim, C.W. Bullard, Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers, International Journal of Refrigeration 25 (2002) 390–400. Doi: 10.1016/S0140-7007(01)00025-1.
  27. É. Nogueira, Entropy generation analysis in a gasket plate heat exchanger using non-spherical shape of alumina boehmite nanoparticles, Ovidius University Annals of Chemistry 33 (2022) 41 – 49. Doi: 10.2478/auoc-2022-0006
  28. R.O. Stroman, M.W. Schuette, G. S. Page, Cooling System Design for PEM Fuel Cell Powered Air Vehicles, Naval Research Laboratory Washington, DC 20375-5320, NRL/MR/6110--10-9253, 2010.
  29. D. Govindaraj, Effective Selection Methodology for a Louvered Fin Heat Exchanger Using Thermal Resistance and Number of Transfer Units Method, SAE Technical Paper 2011-26-0090 ( 2011) 1-7 . Doi: 10.4271/2011-26-0090.
DOI: https://doi.org/10.2478/auoc-2024-0015 | Journal eISSN: 2286-038X | Journal ISSN: 1583-2430
Language: English
Page range: 111 - 117
Submitted on: Jul 14, 2024
|
Accepted on: Sep 21, 2024
|
Published on: Sep 30, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2024 Viorel Ionescu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.