References
- A. González, O. Ruz, E. Castillo, Numerical study of the fluid dynamics and heat transfer for shear-thinning nanofluids in a micro pin-fin heat sink, Case Studies in Thermal Engineering 28 (2021) 101635-101662. Doi: 10.1016/j.csite.2021.101635
- Q. Zuoqin, W. Qiang, C. Junlin, D. Jun, Simulation investigation on inlet velocity profile and configuration parameters of louver fin, Applied Thermal Engineering 138 (2018) 173–182. Doi: 10.1016/j.applthermaleng.2018.02.009
- A. Sadeghianjahromi, C.C. Wang, Heat transfer enhancement in fin-and tube heat exchangers – a review on different mechanisms, Renewable and Sustainable Energy Reviews 137 (2021) 110470-110512. Doi: 10.1016/j.rser.2020.110470
- S.H. Habibian, A.M.A. Abolmaali, Numerical investigation of the effects of fin shape, antifreeze and nanoparticles on the performance of compact finned-tube heat exchangers for automobile radiator, Applied Thermal Engineering 133 (2018) 248–260. Doi: 10.1016/j.applthermaleng.2018.01.032
- C.C. Wang, K.Y. Chen, J.S. Liaw, C.Y. Tseng, An experimental study of the air-side performance of fin-and-tube heat exchangers having plain, louver, and semi-dimple vortex generator configuration, International Journal of Heat and Mass Transfer 80 (2015) 281–287. Doi: 10.1016/j.ijheatmasstransfer.2014.09.030
- J.Y. Jang, C.C. Chen, Optimization of louvered-fin heat exchanger with variable louver angles, Applied Thermal Engineering 91 (2015) 138–150. Doi: 10.1016/j.applthermaleng.2015.08.009
- J.S. Park, J. Kim, K.S. Lee, Thermal and drainage performance of a louvered fin heat exchanger according to heat exchanger inclination angle under frosting and defrosting conditions, International Journal of Heat and Mass Transfer 108 (2017) 1335–1339. Doi: 10.1016/j.ijheatmasstransfer.2017.01.043
- A. Okbaz, A. Pınarbas, A.B. Olcay, Experimental investigation of effect of different tube row-numbers, fin pitches and operating conditions on thermal and hydraulic performances of louvered and wavy finned heat exchangers, International Journal of Thermal Sciences 151 (2020) 106256. Doi: 10.1016/j.ijthermalsci.2019.106256
- Z. Qi, J. Chen, Z. Chen, Parametric study on the performance of a heat exchanger with corrugated louvered fins, Applied Thermal Engineering 27 (2007) 539–544. Doi: 10.1016/j.applthermaleng.2006.06.015
- A. Okbaz, A. Pınarbası, A.B. Olcay, M.H. Aksoy, An experimental, computational and flow visualization study on the air-side thermal and hydraulic performance of louvered fin and round tube heat exchangers, International Journal of Heat and Mass Transfer 121 (2018) 153–169. Doi: 10.1016/j.ijheatmasstransfer.2017.12.127
- P. Karthik, V. Kumaresan, R. Velraj, Experimental and parametric studies of a louvered fin and flat tube compact heat exchanger using computational fluid dynamics, Alexandria Engineering Journal 54 (2015) 905-915. Doi: 10.1016/j.aej.2015.08.003
- J. Dong, J. Chen, Z. Chen, W. Zhang, Y. Zhou, Heat transfer and pressure drop correlations for the multi-louvered fin compact heat exchangers, Energy Conversion and Management. 48 (2007) 1506–1515. Doi: 10.1016/j.enconman.2006.11.023
- D. Ryan, J. Shang, Q. Quillivic, B. Porter, Performance and energy efficiency testing of a lightweight FCEV hybrid vehicle, European Electrical Vehicle Congress (EEVC), Brussels, Belgium, 3rd – 5th December 2014, 1 – 12.
- K. Ikeya, K. Hirota, Y. Takada, T. Eguchi, K. Mizutani, T. Ohta, Development and evaluation of air-cooled fuel cell scooter, SAE Technical Paper 2011-32-0644 (2011) 1-9. Doi: 10.4271/2011-32-0644.
- A. Fly, R.H. Thring, A comparison of evaporative and liquid cooling methods for fuel cell vehicles, International Journal of Hydrogen Energy 41 (2016) 14217 – 14229. Doi: 10.1016/j.ijhydene.2016.06.089
- L.B. Erbay, B. Doğan, M.M. Öztürk, in: S.M.S. Murshed and M.M. Lopes (Eds), Chapter 4: Comprehensive Study of Heat Exchangers with Louvered Fins, Heat Exchangers - Advanced Features and Applications, InTech (2017) 62 – 92. Doi: 10.5772/66472
- D. Jung, D.N. Assanis, Numerical modeling of cross flow compact heat exchanger with louvered fins using thermal resistance concept, SAE Technical Paper 2006-01-0726 (2006) 1-10. Doi: 10.4271/2006-01-0726.
- V. Gnielinski, G1 heat transfer in pipe flow, VDI Heat Atlas. VDI-Buch. Springer, Berlin, Heidelberg, 2010. Doi: 10.1007/978-3-540-77877-6_34
- Z. Said, M.E.H. Assad, A.A. Hachicha, E. Bellos, M.A. Abdelkareem, D.Z. Alazaizeh, B.A.A. Yousef, Enhancing the performance of automotive radiators using nanofluids, Renewable and Sustainable Energy Reviews 112 (2019) 183–194. Doi: 10.1016/j.rser.2019.05.052
- H. Kwon, S. Park, J. Choi, J. Han, A Study on the Optimization of the Louver Fin Heat Exchanger for Fuel Cell Electric Vehicle Using Genetic Algorithm, Applied Science 13 (2023) 2539-2553. Doi: 10.3390/app13042539
- Y.-J. Chang, C.-C. Wang, A Generalized Heat transfer Correlation for Louver Fin Geometry, International Journal of Heat and Mass Transfer 40 (1997) 533-544. Doi: 10.1016/0017-9310(96)00116-0
- H.C. Kang, G.W. Jun, Heat Transfer and Flow Resistance Characteristics of Louver Fin Geometry for Automobile Applications, Journal of Heat Transfer 133 (2011) 101802 – 101808. Doi: 10.1115/1.4004169
- R.K. Shah, D.P. Sekulic, Fundamentals of heat exchanger design. John Wiley & Sons Inc., New Jersey, 2003.
- Y.J. Chang, K.C. Hsu, Y.T. Lin, C.C. Wang, A generalized friction correlation for louver fin geometry, International Journal of Heat and Mass Transfer 12 (2000) 2237–2243. Doi: 10.1016/0017-9310(96)00116-0
- W. Kays, A.L. London, Compact Heat Exchangers, 3rd Ed., McGraw – Hill Book Company, New York, 1984, p.15.
- M.H. Kim, C.W. Bullard, Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers, International Journal of Refrigeration 25 (2002) 390–400. Doi: 10.1016/S0140-7007(01)00025-1.
- É. Nogueira, Entropy generation analysis in a gasket plate heat exchanger using non-spherical shape of alumina boehmite nanoparticles, Ovidius University Annals of Chemistry 33 (2022) 41 – 49. Doi: 10.2478/auoc-2022-0006
- R.O. Stroman, M.W. Schuette, G. S. Page, Cooling System Design for PEM Fuel Cell Powered Air Vehicles, Naval Research Laboratory Washington, DC 20375-5320, NRL/MR/6110--10-9253, 2010.
- D. Govindaraj, Effective Selection Methodology for a Louvered Fin Heat Exchanger Using Thermal Resistance and Number of Transfer Units Method, SAE Technical Paper 2011-26-0090 ( 2011) 1-7 . Doi: 10.4271/2011-26-0090.