References
- T. Štefanac, D. Grgas, T. Landeka Dragičević, Xenobiotics-division and methods of detection: A review, Journal of Xenobiotics 11 (2021) 130-141. Doi: 10.3390/jox11040009
- J.R. Idle, F.J. Gonzalez, Metabolomics, Cell Metabolism 6 (2007) 348-351. Doi: 10.1016/j.cmet.2007.10.005
- K. Taylor, Recent developments in alternatives to animal testing, in: K. Herrmann, K. Jayne (Eds), Animal Experimentation: Working Towards a Paradigm Change, Brill, Leiden, Netherlands, 2019, pp. 585–609. Doi: 10.1163/9789004391192_025
- J.C. Madden, S.J. Enoch, A. Paini, M.T.D. Cronin, A review of in silico tools as alternatives to animal testing: Principles, resources and applications, Alternatives to Laboratory Animals 48 (2020) 146-172. Doi: 10.1177/0261192920965977
- S. Schmeisser, A.Miccoli, M. von Bergen, E. Berggren, A. Braeuning, W. Busch, C. Desaintes, A. Gourmelon, R. Grafström, J. Harrill, T. Hartung, M. Herzler, G.E.N. Kass, N. Kleinstreuer, M. Leist, M. Luijten, P. Marx-Stoelting, O. Poetz, B. van Ravenzwaay, R. Roggeband, V. Rogiers, A. Roth, P. Sanders, R.S. Thomas, A. M. Vinggaard, M. Vinken, B. van de Water, A. Luch, T. Tralau, New approach methodologies in human regulatory toxicology – Not if, but how and when!, Environment International 178 (2023) 108082. Doi: 10.1016/j.envint.2023.108082
- A. Isvoran, A. Ciorsac. V. Ostafe, ADME-Tox profiling of some low molecular weight water soluble chitosan derivatives, ADMET & DMPK 5 (2017) 192-200. Doi:10.5599/admet.5.3.423
- D. Dascalu, D.L. Roman, M. Filip, A. Ciorsac, V. Ostafe, A. Isvoran, Solubility and ADMET profiles of short oligomers of lactic acid, ADMET & DMPK 8 (2020) 425-436. Doi: 10.5599/admet.843
- D.L. Roman, M. Roman, C. Som, M. Schmutz, E. Hernandez, P. Wick, T. Casalini, G. Perale, V. Ostafe, A. Isvoran, Computational assessment of the pharmacological profiles of degradation products of chitosan, Frontiers in Bioengineering and Biotechnology 7 (2019) 214. Doi: 10.3389/fbioe.2019.00214
- D.L. Roman, A. Isvoran, M. Filip, V. Ostafe, M. Zinn, In silico assessment of pharmacological profile of low molecular weight oligohydroxyalkanoates, Frontiers in Bioengineering and Biotechnology 8 (2020) 584010. DOI: 10.3389/fbioe.2020.584010
- A. Ciorsac, I. Popescu, A. Isvoran, Synthetic anabolic steroids binding to the human androgen receptor, Romanian Journal of Physics 60 (2015) 1112-1120.
- M. Roman, D.L. Roman, V. Ostafe, A. Ciorsac, A. Isvoran, Computational assessment of pharmacokinetics and biological effects of some anabolic and androgenic steroids, Pharmaceutical Research 35 (2018) 41. Doi: 10.1007/s11095-018-2353-1
- J. Kędzierski, J.A. Allard, A. Odermatt, M. Smieško, Assessment of the inhibitory potential of anabolic steroids towards human AKR1D1 by computational methods and in vitro evaluation, Toxicology Letters 384 (2023) 1-13. Doi: 10.1016/j.toxlet.2023.07.006
- A. Bitang, V. Bitang, V. Grosu, A. Ciorsac, A. Isvoran, ADMET profiles of selected anabolic steroid derivatives, Journal of the Serbian Chemical Society 89 (2024) 367–382. Doi: 10.2298/JSC230803086B
- D. Craciun, D. Modra, A. Isvoran, ADME-Tox profiles of some food additives and pesticides, AIP Conference Proceedings 1694 (2015) UNSP 040007. Doi: 10.1063/1.4937259
- D.I. Voiculescu, V. Ostafe, A. Isvoran, Computational assessment of the pharmacokinetics and toxicity of the intensive sweeteners, Farmacia 69 (2021)1032-1041. Doi: 10.31925/farmacia.2021.6.3
- E.K. Carrão Dantas, C.F. Araújo-Lima, C.L.S. Ferreira, A.D.C. Goldstein, C.A.F. Aiub, M.G.P. Coelho, I. Felzenszwalb. Toxicogenetic assessment of a pre-workout supplement: In vitro mutagenicity, cytotoxicity, genotoxicity and glutathione determination in liver cell lines and in silico ADMET approaches, Mutation Research: Genetic Toxicology and Environmental Mutagenesis 879-880 (2022) 503517. Doi: 10.1016/j.mrgentox.2022.503517
- M.V. Alves, E.N. Muratov, A. Zakharov, N.N. Muratov, C.H. Andrade, A. Tropsha, Chemical toxicity prediction for major classes of industrial chemicals: Is it possible to develop universal models covering cosmetics, drugs, and pesticides?, Food and Chemical Toxicology 112 (2018) 526-534. Doi: 10.1016/j.fct.2017.04.008
- D. Craciun, D. Dascalu, A. Isvoran, Computational assessment of the ADME-Tox profiles and harmful effects of the most common used phthalates on the human health, Studia Universitatis Babes-Bolyai Chemia 64 (2019) 71-92. Doi: 10.24193/subbchem.2019.4.06
- D. Dascalu, A. Isvoran, N. Ianovici, Predictions of the biological effects of several acyclic monoterpenes as chemical constituents of essential oils extracted from plants, Molecules 28 (2023) 4640. Doi: 10.3390/molecules28124640
- S. Ceauran, A. Ciorsac, V. Ostafe, A. Isvoran, Evaluation of the toxicity potential of the metabolites of di-isononyl phthalate and of their interactions with members of family 1 of sulfotransferases - A computational study, Molecules 28 (2023) 6748. Doi: 10.3390/molecules28186748
- I.M. Gridan, A.A. Ciorsac, A. Isvoran, Prediction of ADME-Tox properties and toxicological endpoints of triazole fungicides used for cereals protection, ADMET&DMPK 7 (2019) 161-173. Doi: 10.5599/admet.668
- D.L. Roman, D.I. Voiculescu M.A. Matica, V. Baerle, M.N. Filimon, V. Ostafe, A. Isvoran, Assessment of the effects of triticonazole on soil and human health, Molecules 27 (2022) 6554. Doi: 10.3390/molecules27196554
- D.I. Voiculescu, D.L. Roman, V. Ostafe, A. Isvoran, A cheminformatics study regarding the human health risks assessment of the stereoisomers of difenoconazole, Molecules 27 (2022) 4682. Doi: 10.3390/molecules27154682
- D.L. Roman, V. Ostafe, A. Isvoran, Computational assessment of chito-oligosaccharides interactions with plasma proteins, Marine Drugs 19 (2021) 120. Doi: 10.3390/md19030120
- M.A. Matica, D.L. Roman, V. Ostafe, A. Isvoran, Deeper inside the use of chitooligosaccharides in wound healing process: A computational approach, Journal of the Serbian Chemical Society 88 (2023) 251-265. Doi: 10.2298/JSC220702081M
- D.L. Roman, V. Ostafe, A. Isvoran, Deeper inside the specificity of lysozyme when degrading chitosan. A structural bioinformatics study, Journal of Molecular Graphics and Modelling 100 (2020) 107676. Doi: 10.1016/j.jmgm.2020.107676
- A. Ciorsac, D.L. Vladoiu, C. Fagnen, M. Louet, M.A. Miteva, A. Isvoran, Assessment of some pesticides interactions with human cytochrome P450: CYP2C8, CYP2C9 and CYP2C19 by molecular docking approach, AIP Conference Proceedings 1722 (2016) 300001. Doi: 10.1063/1.4944305
- C.Y. Jia, J.Y. Li, G.F. Hao, G.F. Yang, A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discovery Today 25 (2020) 248-258. Doi: 10.1016/j.drudis.2019.10.014
- Z. Wu, M. Zhu, Y. Kang, E.L. Leung, T. Lei, C. Shen, D. Jiang, Z. Wang, D. Cao, T. Hou, Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets, Briefings in Bioinformatics 22 (2021) bbaa321. Doi: 10.1093/bib/bbaa321
- A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Scientific Reports 7 (2017) 42717. Doi: 10.1038/srep42717
- F. Cheng, W. Li, Y. Zhou, J. Shen, Z. Wu, G. Liu, P.W. Lee, Y. Tang, admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties, Journal of Chemical Information and Modeling 52 (2012) 3099–3105. Doi: 10.1021/ci300367a
- H. Yang, C. Lou, L. Sun, J. Li, Y. Cai, Z. Wang, W. Li, G. Liu, Y Tang, admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties, Bioinformatics 35 (2019) 1067-1069. Doi: 10.1093/bioinformatics/bty707
- Y. Gu, Z. Yu, Y. Wang, L. Chen, C. Lou, C. Yang, W. Li, G. Liu, Y. Tang, admetSAR3.0: a comprehensive platform for exploration, prediction and optimization of chemical ADMET properties, Nucleic Acids Research gkae298 (2024) 1-7. Doi: 10.1093/nar/gkae298
- J. Dong, N. Wang, Z. Yao, L. Zhang, Y. Cheng, D. Ouyang, A. Lu, D. Cao, ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database, Journal of Cheminformatics 10 (2018) 29. Doi: 10.1186/s13321-018-0283-x
- G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, X. Chen, T. Hou, D. Cao, ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research 49W1 (2021) W5-W14. Doi: 10.1093/nar/gkab255
- L. Fu, S. Shi, J. Yi, N. Wang, Y. He, Z. Wu, J. Peng, Y. Deng, W. Wang, C. Wu, A. Lyu, X. Zeng, W. Zhao, T. Hou, D. Cao, ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support, Nucleic Acids Research gkae236 (2024) 1-10. Doi: 10.1093/nar/gkae236
- P. Banerjee, O.A. Eckert, A.K. Schrey, R. Preissner, ProTox-II: a webserver for the prediction of toxicity of chemicals, Nucleic Acids Research 46(W1) (2018) W257-W263. Doi: 10.1093/nar/gky318
- P. Banerjee, E. Kemmler, M. Dunkel, R. Preissner, ProTox 3.0: a webserver for the prediction of toxicity of chemicals, Nucleic Acids Research gkae303 (2024) 1-8. Doi: 10.1093/nar/gkae303
- M.A. Miteva, S. Violas, M. Montes, D. Gomez, P. Tuffery, B.O. _2 Villoutreix, FAF-Drugs: free ADME/tox filtering of compound collections, Nucleic Acids Research, 34 (2006) W738–W744. Doi: 10.1093/nar/gkl065
- D. Lagorce, O. Sperandio, H. Galons, M.A. Miteva, B.O. Villoutreix, FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects, BMC Bioinformatics 9 (2008) 396. Doi: 10.1186/1471-2105-9-396
- D. Lagorce, O. Sperandio, J.B. Baell, M.A. Miteva, B.O. Villoutreix, FAF-Drugs3: a web server for compound property calculation and chemical library design, Nucleic Acids Research 43(W1) (2015) W200-207. Doi: 10.1093/nar/gkv353
- D. Lagorce, L. Bouslama, J. Becot, M. A Miteva, B.O Villoutreix, FAF-Drugs4: free ADME-tox filtering computations for chemical biology and early stages drug discovery, Bioinformatics 33 (2017) 3658–3660. Doi: 10.1093/bioinformatics/btx491
- S.K. Lee, I.H. Lee, H.J. Kim, G.S. Chang, J.E. Chung, K.T. No, The PreADME Approach: Web-based program for rapid prediction of physicochemical, drug absorption and drug-like properties In: EuroQSAR Designing Drugs and Crop Protectants: processes, problems and solutions, Blackwell Publishing, Massachusetts, USA, 2003, 418-420.
- R.J. Weaver, J.P. Valentin, Today’s challenges to derisk and predict drug safety in human “Mind-the-Gap” Toxicological Sciences 167 (2019) 307-321. Doi: 10.1093/toxsci/kfy270
- A. Bassan, V.M. Alves, A. Amberg, L.T. Anger, S. Auerbach, L. Beilke, A. Bender, M.T.D. Cronin, K.P. Cross, J.H. Hsieh, N. Greene, R. Kemper, M.T. Kim, M. Mumtaz, T. Noeske, M. Pavan, J. Pletz, D.P. Russo, Y. Sabnis, M. Schaefer, D.T. Szabo, J.P. Valentin, J. Wichard, D. Williams, D. Woolley, C. Zwickl, G.J. Myatt, In silico approaches in organ toxicity hazard assessment: Current status and future needs in predicting liver toxicity, Computational Toxicology 20 (2021) 100187. Doi: 10.1016/j.comtox.2021.100187.
- L. Zhang, H. Ai, W. Chen, Z. Yin, H. Hu, J. Zhu, J. Zhao, Q. Zhao, H. Liu. CarcinoPred-EL: Novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods, Scientific Reports 7 (2017) 2118. Doi: 10.1038/s41598-017-02365-0
- R.C. Braga, V.M. Alves, M.F. Silva, E. Muratov, D. Fourches, L.M. Lião, A. Tropsha, C.H. Andrade, Pred-hERG: a novel web-accessible computational tool for predicting cardiac toxicity, Molecular Informatics 34 (2015) 698-701. Doi: 10.1002/minf.201500040
- K. Kolšek, J. Mavri, M. Sollner Dolenc, S. Gobec, S. Turk, Endocrine disruptome - an open source prediction tool for assessing endocrine disruption potential through nuclear receptor binding, Journal of Chemical Information and Modeling 54 (2014) 1254-1267. Doi: 10.1021/ci400649p
- J.V.B. Borba, R.C. Braga, V.M. Alves, E.N. Muratov, N. Kleinstreuer, A. Tropsha, C.H. Andrade, Pred-Skin: A web portal for accurate prediction of human skin sensitizers, Chemical Research in Toxicology 34 (2021) 258-267. Doi: 10.1021/acs.chemrestox.0c00186
- G.M. Morris, M. Lim-Wilby, Molecular docking In: A. Kukol (Eds) Methods in Molecular Biology, Humana Press 443 (2008) 365–382. Doi: 10.1007/978-1-59745-177-2_19
- A. Tuerkova, O. Ungvári, R. Laczkó-Rigó, E. Mernyák, G. Szakács, C. Özvegy-Laczka, B. Zdrazil, Data-driven ensemble docking to map molecular interactions of steroid analogs with hepatic organic anion transporting polypeptides, Journal of Chemical Information and Modeling 61 (2021) 3109-3127. Doi: 10.1021/acs.jcim.1c00362.
- A.K. Sharma. K. Gaur, R.K. Tiwari, M.S. Gaur, Computational interaction analysis of organophosphorus pesticides with different metabolic proteins in humans, Journal of Biomedical Research 25 (2011) 335-347. Doi: 10.1016/S1674-8301(11)60045-6
- L. Chedik, A. Bruyère, A. Bacle, S. Potin, M. Le Vée, O. Fradel, Interactions of pesticides with membrane drug transporters implications for toxicokinetics and toxicity, Expert Opinion on Drug Metabolism and Toxicology 14 (2018) 739-752. Doi: 10.1080/17425255.2018.1487398
- R. Quds, A. Hashmi, Z. Iqbal, R. Mahmood, Interaction of mancozeb with human hemoglobin: Spectroscopic, molecular docking and molecular dynamic simulation studies, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 280 (2022) 121503, Doi: 10.1016/j.saa.2022.121503
- Y. Hou, Y. Bai, C. Lu, Q. Wang, Z. Wang, J. Gao, H. Xu, Applying molecular docking to pesticides, Pest Management Science 79 (2023) 4140-4152. Doi: 10.1002/ps.7700
- J.Ad.C.R. Souza, T. Souza, I.L.Ad.C.R. Quintans, D. Farias, Network toxicology and molecular docking to investigate the non-ache mechanisms of organophosphate-induced neurodevelopmental toxicity, Toxics 11 (2023) 710. Doi: 10.3390/toxics11080710
- V. Tortosa, V. Pietropaolo, V. Brandi, G. Macari, A. Pasquadibisceglie, F. Polticelli, Computational methods for the identification of molecular targets of toxic food additives. butylated hydroxytoluene as a case study, Molecules 25 (2020) 2229. Doi: 10.3390/molecules25092229
- C.D. Arulanandam, J.S. Hwang, A.J. Rathinam, H.U. Dahm, Evaluating different web applications to assess the toxicity of plasticizers, Scientific Reports 12 (2022) 19684. Doi: 10.1038/s41598-022-18327-0
- M. Roman, D.L. Roman, V. Ostafe, A. Isvoran, Computational assessment of biological effects of methyl-, ethyl-, propyl- and butyl-parabens, Journal of Bioinformatics, Genomics, Proteomics 3 (2018) 1029. Doi: 10.47739/2576-1102/1029
- A. Gunia-Krzyżak, J. Popiół, K. Słoczyńska, D. Żelaszczyk, K. Orzeł, P. Koczurkiewicz-Adamczyk, K. Wójcik-Pszczoła, P. Kasza, M. Borczuch-Kostańska, E. Pękala, In silico and in vitro evaluation of a safety profile of a cosmetic ingredient: 4-methoxychalcone (4-MC), Toxicology in Vitro 93 (2023) 105696. Doi: 10.1016/j.tiv.2023.105696
- D. Davani-Davari, I. Karimzadeh, H. Khalili, The potential effects of anabolic-androgenic steroids and growth hormone as commonly used sport supplements on the kidney: a systematic review, BMC Nephrology 20 (2019) 198. Doi: 10.1186/s12882-019-1384-0
- T.L. Šestić, J.J. Ajduković, M.A. Marinović, E.T. Petri, M.P. Savić, In silico ADMET analysis of the A-, B- and D-modified androstane derivatives with potential anticancer effects, Steroids 189 (2023) 109147. Doi: 10.1016/j.steroids.2022.109147
- A. Ozkara, D. Akil, M. Konuk, Pesticides, environmental pollution, and health. In: M.L. Larramendy, S. Soloneski (Eds.) Environmental Health Risk—Hazardous Factors to Living Species; IntechOpen Rijeka, Croatia, 2016, pp. 3-27. Doi: 10.5772/63094
- I. El-Nahhal, Y. El-Nahhal, Pesticide residues in drinking water, their potential risk to human health and removal options, Journal of Environmental Management 299 (2021) 113611. Doi: 10.1016/j.jenvman.2021.113611
- M.I. Ahmad, A. Usman, M. Ahmad, Computational study involving identification of endocrine disrupting potential of herbicides: Its implication in TDS and cancer progression in CRPC patients, Chemosphere 173 (2017) 395-403. Doi: 10.1016/j.chemosphere.2017.01.054.
- M. Akram, M. Patt, T. Kaserer, V. Temml, W. Waratchareeyakul, D.V. Kratschmar, J. Haupenthal, R.W. Hartmann, A. Odermatt, D. Schuster, Identification of the fungicide epoxiconazole by virtual screening and biological assessment as inhibitor of human 11β-hydroxylase and aldosterone synthase, The Journal of Steroid Biochemistry and Molecular Biology 192 (2019) 105358. Doi: 10.1016/j.jsbmb.2019.04.007
- B. Skanes, K. Warriner, R.S. Prosser, Hazard assessment using an in-silico toxicity assessment of the transformation products of boscalid, pyraclostrobin, fenbuconazole and glyphosate generated by exposure to an advanced oxidative process, Toxicology in Vitro 70 (2021) 105049. Doi: 10.1016/j.tiv.2020.105049
- S. Jayaraman, K. Krishnamoorthy, M. Prasad, V.P. Veeraraghavan, R. Krishnamoorthy, M.A. Alshuniaber, M.K. Gatasheh, M. Elrobh, Gunassekaran, Glyphosate potentiates insulin resistance in skeletal muscle through the modulation of IRS-1/PI3K/Akt mediated mechanisms: An in vivo and in silico analysis, International Journal of Biological Macromolecules 242 (2023) 124917. Doi: 10.1016/j.ijbiomac.2023.124917
- A. Gómez, A. Alarcón, W. Acosta, A. Malagón, Identification of potential human targets of glyphosate using in silico target fishing, Computational Toxicology 30 (2024) 100306. Doi: 10.1016/j.comtox.2024.100306
- F. Yang, Y. Cui, H. Yu, Y. Guo, Y. Cheng, W. Yao, Y. Xie, Identifying potential thyroid hormone disrupting effects among diphenyl ether structure pesticides and their metabolites in silico, Chemosphere 288 (2022) 132575. Doi: 10.1016/j.chemosphere.2021.132575
- Mst.F. Afrin, E. Kabir, M.R.O.K. Noyon, N. Akter, T. Sultana, J.U. Nayeem, M. Uzzaman, Spectrochemical, biological, and toxicological studies of DDT, DDD, and DDE: An in-silico approach, Informatics in Medicine Unlocked 39 (2023) 101254. Doi: 10.1016/j.imu.2023.101254
- T. Sultana, J. Tasnim, Md.W. H. Talukder, M.L. Mia, S.N. Suchana, F. Akter, Md.A. Saleh, Mst.F. Afrin, M. Uzzaman, Physicochemical and toxicological studies of some commonly used triazine-based herbicides; in-silico approach, Informatics in Medicine Unlocked 42 (2023) 101378. Doi: 10.1016/j.imu.2023.101378