Have a personal or library account? Click to login
End-of-life mobile phones parts contain toxic metals that make them hazardous, but can also serve as resource reserves for such metals Cover

End-of-life mobile phones parts contain toxic metals that make them hazardous, but can also serve as resource reserves for such metals

Open Access
|Sep 2023

References

  1. [1]. N. Gupta, A. Trivedi, S. Hait, Materials composition and associated toxicological impact assessment of mobile phones, Journal of Environmental Chemical Engineering 9 (2021) 104603. Doi: 10.1016/j.jece.2020.104603
  2. [2]. K.G. Maragkos, J.N. Hahladakis, E. Gidarakos, Qualitative and quantitative determination of heavy metals in waste cellular phones, Waste Management 33 (2013) 1882-1889. Doi: 10.1016/j.wasman.2013.05.016
  3. [3]. F. Amiri, M. Moradinazar, J. Moludi, Y. Pasdar, F. Najafi, E. Shakiba, B. Hamzeh, A. Saber, The association between self-reported mobile phone usage with blood pressure and heart rate: evidence from a cross-sectional study, BMC Public Health 22 (2022) 2031. Doi: 10.1186/s12889-022014458-1
  4. [4]. B. Sanou, The world in 2013: ICT facts and figures. Geneva, Switzerland, Retrieved from www.itu.int/ICTFactsFigures2013-e.pdf
  5. [5]. A. Zilberlicht, Z. Wiener-Megnazi, Y. Sheinfeld, B. Grach, S. Lahav-Baratz, M. Dirnfield, Habits of cellphone usage and sperm quality - does it warrant attention? Reproductive BioMedicine Online 31 (2015) 421-426. Doi: 10.1016/j.rbmo.2015.06.006
  6. [6]. O. Osibanjo, I.C. Nnorom, The challenge of electronic waste (E-waste) management in developing countries, Waste Management and Research 25 (2007) 489–501. Doi: 10.1177/0734242X07082028
  7. [7]. R. Muoka, Press release: Telecom sector contributes N2.508 trillion to Nigeria's GDP, Nigeria Communications Commission (2023), retrieved from ncc.gov.ng/accessible/media-centre/news-headlines/1346-press-release-telecom-sector-contributes-n2-508-trillion-to nigeria-s-gdp
  8. [8]. N. Singh, H. Duan, F. Yin, Q. Song, J. Li, Characterizing the materials composition and recovery potential from waste mobile phones: a comparative evaluation of cellular and smart phones, ACS Sustainable Chemical Engineering 6 (2018) 13016-13024. Doi: 10.1021/acssuschemeng.8b02516
  9. [9]. International Precious Metals Institute, IPMI Guidance - Environmentally sound management for used mobile phones. International Precious Metals Institute, IPMI, USA, 2023. Retrieved from https://studylib.net/doc/7314722/ipmi-guidance--environmentally-sound
  10. [10]. Y. Jang, M. Kim, Management of used and end of life mobile phones in Korea: a review, Resource Conservation and Recycling 55 (2010) 11-19. Doi: 10.1016/j.resconrec.2010.07.003
  11. [11]. C.E. Meskers, C. Hagelüken, Closed loop WEEE recycling? Challenges and opportunities for a global recycling society. In: S.M. Howard, (Ed.), EPD-TMS Congress 2009. Proceedings of Sessions and Symposia Sponsored by the Extraction and Processing Division (EPD) of the Minerals, Metals and Materials Society (TMS), San Fransisco, California, USA, pp. 1049–1054.
  12. [12]. S.R. Lim, J.M. Schoenung, Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities, Waste Management 30 (2010) 1653–1660. Doi: 10.1016/j.wasman.2010.04.005
  13. [13]. P. Huang, X. Zhang, X. Deng, Survey and environmental awareness and performance in Ningbo, China: a case study on household electrical and electronic equipment, Journal of Cleaner Production 14 (2006) 1635–1643. Doi: 10.1016/j.jclepro.2006.02.006
  14. [14]. G. Seliger, S.J. Skerlos, B. Basdere, M. Zettl, Design of a modular housing platform to accommodate the remanufacturing of multiple cellular telephone models, 2003 EcoDesign 3rd International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan (2003) pp. 243–50. Doi: 10.1109/ECODIM.2003.1322670
  15. [15]. S. Yadav, S. Yadav, P. Kumar, Metal toxicity assessment of mobile phone parts using Milli Q water, Waste Management 34 (2014) 1274-1278. Doi: 10.1016/j.wasman.2014.02.024
  16. [16]. European Commission, Directive 2002/95/EC on the European Parliament and of the Council on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. Official Journal of the European Union L37 (2003) 19–23.
  17. [17]. US EPA (United States Environmental Protection Agency), Method 3050B: Acid digestion of sediments, sludges, and soils, Revision 2, 1996, Washington, DC. Retrieved from https://www.epa.gov/sites/default/files/2015-06/documents/epa-3050b.pdf
  18. [18]. US CPSC (United States Consumer Product Safety Commission), Test Method: CPSC-CH-E1002-08.3. Standard operating procedure for determining total lead (Pb) in nonmetal children's products, revision, 2009. https://www.cpsc.gov/s3fs-public/pdfs/blk_media_CPSC-CH-E1002-08_3.pdf
  19. [19]. DTSC (California Department of Toxic Substances), Determination of regulated elements in discarded laptops, LCD monitors plasma TVs, and LCD TVs.” Sacramento: California Department of Toxic Substances Control, 2004. http://www.dtsc.ca.gov/hazardouswaste/ewaste/upload/hwmp_rep_sb20_lcd.pdf
  20. [20]. T.A. Majolagbe, Comparison of heavy metals found in waste mobile phones. M.Sc. Thesis, University of Ibadan, 2009.
  21. [21]. B. Rohrig, Chemmatters Article, “smartphones: smart chemistry”, American Chemical Society (2015), retrieved from https://www.acs.org/education/resources/highschool/chemmatters/past-issues/archives-2014-2015/smartphones.html, last visited in 21.07.2023.
  22. [22]. O. Tsydenova, M. Bengtsson, Chemical hazards associated with treatment of waste electrical and electronic equipment, Waste Management 31 (2011) 45-58. Doi: 10.1016/j.wasman.2010.08.014
  23. [23]. E. Dimitrakakis, A. Janz, B. Bilitewski, E. Gidarakos, Small WEEE: determining recyclables and hazardous substances in plastics, Journal of Hazardous Materials 29 (2009) 2700-2706. Doi: 10.1016/j.jhazmat.2008.04.054
  24. [24]. I.C. Nnorom, O. Osibanjo, Toxicity characterization of waste mobile phone plastics, Journal of Hazardous Materials 161 (2008) 183-188. Doi: 10.1016/j.jhazmat.2008.03.067
  25. [25]. I.C. Nnorom, O. Osibanjo, K. Okechukwu, O. Nkwachukwu, and R.C. Chukwuma, Evaluation of heavy metal release from the disposal of waste computer monitors at an open dump, International Journal of Environmental Science and Development 1 (2010) 227–233. Doi: 10.7763/IJESD.2010.V1.44
  26. [26]. P.O. Iniaghe, G.U. Adie, O. Osibanjo, Metal levels in computer monitor components discarded within the vicinities of electronic workshops, Toxicological and Environmental Chemistry 95 (2013) 1108-1115. Doi: 10.1080/02772248.2013.863890
  27. [27]. K. Olubanjo, O. Osibanjo, I.C. Nnorom, Evaluation of Pb and Cu contents of selected component parts of waste personal computers, Journal of Applied Science and Environmental Management 19 (2015) 470-477. Doi: 10.4314/jasem.v19i3.17
  28. [28]. J.D. Lincoln, O. A. Ogunseitan, A. A. Shapiro, and J. M. Saphres, Leaching assessment of hazardous material in cellular telephones, Environmental Science and Technology 41 (2007) 2572-2578. Doi: 10.1021/es0610479
  29. [29]. M. Sahan, M.A. Kucuker, B. Demirel, A. Hursthouse, Determination of metal content of waste mobile phones and estimation of their recovery potential in Turkey, International Journal of Environmental Research and Public Health 16 (2019) 887. Doi: 10.3390/ijerph16050887
  30. [30]. N. Wagner, What materials are used to make cell phones? Retrieved from https://www.techwalla.com/articles/what-materials-are-used-to-make-cell-phones, last visited in 30.04.2023.
  31. [31]. I.C. Nnorom, O. Osibanjo, Heavy metal characterization of waste portable rechargeable batteries used in mobile phones, International Journal of Environmental Science and Technology 6 (2009) 641-650. Doi: 10.1007/BF03326105
  32. [32]. C.M. Costa, J.C. Barbosa, R. Goncalves, H. Castro, F.J. Del Campo, S. Lanceros-Mendez, Recycling and environmental issues of lithium-ion batteries: advances, challenges and opportunities, Energy Storage Materials 37 (2021) 433-465. Doi: 10.1016/j.ensm.2021.02.032
  33. [33]. Q. Wang, J. Sun, G. Chu, Lithium ion battery fire and explosion., proceedings of the 8th International Symposium of the Fire Safety Science (2005) 375-382.
  34. [34]. R. Lankey, F. McMichael, Rechargeable battery management and recycling: a green design educational module, Green Design Initiative Technical Report, Carnegie Mellon University (1999) 1-14.
  35. [35]. C.J. Rydh, B. Svard, Impact of global metal flows arising from the use of portable rechargeable batteries, Science of the Total Environment 302 (2003) 167-184. Doi: 10.1016/s0048-9697(02)00293-0
  36. [36]. P. Cusack, T. Perrett, The EU RoHS Directive and its implications for the plastics industry, Plastic Additives and Compounding 8 (2006) 46–49. Doi: 10.1016/S1464-391X(06)70584-0
  37. [37]. L.Q. Ma, G.N. Rao, Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils, Journal of Environmental Quality 26 (1997) 259-264. Doi: 10.2134/jeq1997.00472425002
DOI: https://doi.org/10.2478/auoc-2023-0011 | Journal eISSN: 2286-038X | Journal ISSN: 1583-2430
Language: English
Page range: 83 - 90
Submitted on: Mar 28, 2023
Accepted on: Jul 31, 2023
Published on: Sep 13, 2023
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2023 Bukola Omoyemi Abiodun, Paschal Okiroro Iniaghe, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.