Have a personal or library account? Click to login
GC-MS profile and antimicrobial activities of extracts from root of Senna occidentalis Linn.  Cover

GC-MS profile and antimicrobial activities of extracts from root of Senna occidentalis Linn.

Open Access
|Sep 2023

References

  1. [1]. J. Valez-Gavilan, Senna occidentalis (Coffee Senna), Invasive species compendium, CABI Compendium. CABI Internatıonal (2016). Doi: 10.1079/cabicompendium.11450
  2. [2]. R.B. Bhat, E.O. Etejere, V.T. Oladipo, Ethnobotanical studies from central Nigeria, Economic Botany 44 (1990) 382-390. Doi: 10.1007/bf03183923
  3. [3]. J.P. Yadav, V. Arya, S. Yadav, M. Panghal, S. Kumar, S. Dhankhar, Cassia occidentalis L. A review on its ethnobotany, phytochemical, and pharmacological profile, Fitoterapia 81 (2010) 223-230. Doi: 10.1016/j.fitote.2009.09.008
  4. [4]. M.M. Alshehri, C. Quispe, J. Harrera-Bravo, J. Sharifi-Rad, M. Butnariu, M. Kumar, D. Calina, W.C. Cho, A review of recent studies on the antioxidant and anti-infectious properties of Senna plants, Oxidative and Medicines and Cellular Longevity (2022). Doi: 10.1155/2022/6025900
  5. [5]. R.S. Reeta, K. Patel, R.K. Sukumaran, C. Larroche, A. Pandey, Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production, Bioresource Technology 127 (2013) 500-550. Doi: 10.1016/j.biortech.2012.09.012
  6. [6]. V.V. Sing, J. Jain, A.K. Mishra, Pharmacological and phytochemical profile of Cassia occidentalis L: A review, Journal of Drug Delivery and Therapeutics 6 (2016). Doi: 10.22270/jddt.v6i5.1284
  7. [7]. H.L. Kim, B.J. Camp, R.D. Grigsby, Isolation of N-methyl morpholine from the seeds of Cassia occidentalis (Coffee senna), Journal of Agricultural and Food Chemistry 19 (1971) 198-199. Doi: 10.1021/jf60173a026
  8. [8]. T. Hennebelle, B. Weniger, H. Joseph, S. Sahpaz, F. Bailleul, Senna alata, Fitoterapia 80 (2009) 385-393. Doi: 10.1016/j.fitote.2009.05.008
  9. [9]. Z. Zhang, S.W. Ni, X. Xu, W.Z. Huang, S.S. Wang, H. Zhu, X.M. Gao, Chemical constituents from Cassia occidentalis, Zhongguo Zhong Yao Za Zhi 15 (2021) 3873-3876 (in Chinese). Doi: 10.19540/j.cnki.cjcmm.20210427.201
  10. [10]. P. Jeruto, P.F. Arama, B. Anyango, T. Akenga, R. Nyunja, D. Khasabuli, in vitro antifungal activity of methanolic extracts of Senna didymobotrya (Fresen.). H.S. Irwin & Barneby Plant Parts, African Journal of Traditional, Complementary and Alternative Medicine 13 (2016) 168-174. Doi: 10.21010/ajtcam.v13i6.24
  11. [11]. M.C. Mahanthesh, A.S. Manjappa, M. Shinde, J.I. Disouza, Biological activities of Cassia occidentalis Linn. A systematic review, World Journal of Pharmaceutical Research 8 (2019) 400-417. Doi: 10.20959/wjpr20199-15430
  12. [12]. M.B. Delmut, L.M. Parente, J.R. Paula, E.C. Conceicao, A.S. Santos, I.A.H. Pfrimer, Cassia occidentalis: Effect on healing skin wounds induced by Bothrops moojeni in mice, Journal of Pharmaceutical Technology and Drug Research 2 (2013) 10. Doi: 10.7243/2050-120X-2-10
  13. [13]. A.A. Tamasi, M.O. Shoge, T.T. Adegboyega, E.C. Chukwuma, Phytochemical analysis and in-vitro antimicrobial screening of the leaf extract of Senna occidentalis (Fabaceae), Asian Journal of Natural Product and Biochemistry 19 (2021) 58-65. Doi: 10.13057/biofar/f190203
  14. [14]. S.K. Agarwal, S.S. Singh, S. Verma, S. Kumar, Antifungal activity of anthraquinone derivatives from Rheum emodi, Journal of Ethnopharmacology 72 (2000) 43-46. Doi: 10.1016/S0378-8741(00)00195-1
  15. [15]. N.T. Manojlovic, S. Solujic, S. Sukdolak, Antimicrobial activity of an extract and anthraquinones from Caloplaca schaereri, Lichenologist 34 (2002) 83-85. Doi: 10.1006/lich.2001.0365
  16. [16]. R.A. Abdullahi, H. Mainul, Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes, Journal of Pharmacy and Bio-allied Sciences 12 (2020) 1-10. Doi: 10.4103/jpbs.jpbs_175_19
  17. [17]. A. Altemimi, N. Lakhssassi, A. Baharlouei, D. G. Watson, D.A. Lightfoot, Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts, Plants. (Basel) 6 (2017) 42. Doi: 10.3390/plants6040042
  18. [18]. K.K. Aathira, B. Kariyil, D. Dhanusa, J.S. Haima, Qualitative and quantitative analysis (GC-MS) of methanol extract of Crataeva nurvala stem bark, Journal of Veterinary and Animal Sciences 52 (2021) 135-141. Doi: 10.51966/jvas.2021.52.2.135-141
  19. [19]. M. Pakkirisamy, S.K. Kalakandan, K. Ravichandran, Phytochemical screening, GC-MS, FT-IR analysis of methanolic extract of Curcuma caesia Roxb (Black Tumeric), Pharmacognosy Journal 9 (2017) 952-956. Doi: 10.5530/pj.2017.6.149
  20. [20]. J.R. Shaikh, M.K. Patil, Qualitative tests for preliminary phytochemical screening: An overview, International Journal of Chemical Studies 8 (2020) 8834. Doi: 10.22271/chemi.2020.V8.I2I.8834
  21. [21]. C.S. Ezeonu, C.M. Ejikeme, Qualitative and quantitative determination of phytochemical contents of indigenous Nigerian softwoods, New Journal of Science 2016 (2016) 5601327. Doi: 10.1155/2016/5601327
  22. [22]. A. Finnegan, R.C. Susserott Gouramanis, A simple sample preparation method to significantly improve Fourier Transform Infrared (FT-IR) spectra of micro plastics, Applied Spectroscopy 76 (2022) 783-792. Doi: 10.1177/00037028221075065
  23. [23]. J. van der Weerd, R.M.A. Heeren, J.J. Boon, Preparation methods and accessories for Infrared spectroscopic analysis of multi-layer paint films, Studies in Conservation 49 (2004) 193-210. Doi: 10.2307/25487692
  24. [24]. G.Y. Nyerges, J. Matyasi, J. Balla, Investigation and comparison of 5% dipheny l-95 % dimethylpolysiloxane capillary columns, Periodica Polytechnica Chemical Engineering 64 (2020) 430-436. Doi: 10.3311/ppch.15289
  25. [25]. S.H. Hansen, Quantitative and qualitative chromatographic analysis, In Bioanalysis of pharmaceuticals: Sample preparation, separation techniques and mass spectrometry (2015). Doi: 10.1002/9781118716830
  26. [26]. Y. Zuo, C. Wang, J. Zhan, Separation, characterization, and quantitation of benzoic and phenolic antioxidants in American cranberry fruit by GC-MS, Journal of Agricultural and Food Chemistry 50 (2020) 3789-3794. Doi: 10.1021/jf020055f
  27. [27]. T.V. Benjamin, A. Lamikanra, Investigation of Cassia alata, a plant used in Nigeria in the treatment of skin disease, Pharmaceutical Biology 19 (2008) 93-96. Doi: 10.3109/13880208109070583
  28. [28]. K. Das, R.K. Tiwari, D.K. Shrivastava, Techniques for evaluation of medicinal plant products as antimicrobial agents: Current methods and future trends, Journal of Medicinal Plant Research 4 (2010) 104-111. Doi: 10.5897/jmpr09.030
  29. [29]. H.I. Aletan, H.A. Kwazo, Qualitative and quantitative phytochemical analysis of Maerua crassifolia leaves using various solvents, Nigerian Journal of Pure & Applied Science 32 (2019) 3315-3323. Doi: 10.7910/dvn/6kblbh
  30. [30]. A.S. Saganuwan, M.L. Gulumbe, Evaluation of invitro antimicrobial activities of phytochemical constituents of Cassia occidentalis, Animal Research International 3 (2006) 556-569. Doi: 10.4314/ari.v3i3.40793
  31. [31]. S.Y. Fatmawati, A.S. Purnomo, M.F. AbuBakar, Chemical constituents, usage and pharmacological activity of Cassia alata, Heliyon 6 (2020) e04396. Doi: 10.1016/j.heliyon.2020.e04396
  32. [32]. A.M. Ibrahim, B. Lawal, N.A. Tsado, A. Awwal, Phytochemical screening, and GC-MS determination of bioactive constituents from methanol leaf extract of S. occidentalis, Journal of Coastal Life Medicine 3 (2015) 992-995. Doi: 10.12980/jclm.3.2015j5-135.
  33. [33]. T.O. Issa, A.I. Mohammed Ahmed, Y.S. Mohamed, S. Yagi, A.M. Makhawi, T.O. Khider Tarig, Physiochemical, insecticidal and antidiabetic activities of Senna occidentalis Linn root, Biochemistry Research International 2020 (2020) 8810744. Doi: 10.1155/2020/8810744
  34. [34]. S. Shehu, I. Saleh, S.U. Otokpa, E.V. Madaki, Z.A. Sambi, Phytochemical and antiemetic studies on aqueous ethanol extract of root of Senna occidentalis (L.) Link, Bayero Journal of Pure and Applied Sciences 11 (2018) 94-98. Doi: 10.4314/bajopas.v11i2.11
  35. [35]. R.A. Husein, A.A. El-Anssary, Plants secondary metabolites: The key drivers of pharmacological actions of medicinal plants, in: Herbal Medicine, IntechOpen (2018). Doi: 10.5772/intechopen.76139
  36. [36]. A.P. Singh, S. Kumar, Applications of tannins in Industry, In: Tannins-structural properties, biological properties and current knowledge, Intechopen 2020. Doi: 10.5772/intechopen.85984
  37. [37]. A. Ullah, S. Munir, S. LalBadshah, N. Khan, L. Ghani, B.G. Paulson, A.H. Emwas, J. Jaremko, Important flavonoids and their role as a therapeutic agent, Molecules 25 (2020) 5243. Doi: 10.3390/molecules25225243
  38. [38]. A.K. Estrada, G.S. Laarveid, B. Bari, Isolation and evaluation of immunological adjuvant activities of saponins from Polygala Senegal L., Comparative Immunology: Microbial Infectious Diseases 23 (2000) 27-43. Doi: 10.1016/S0147-9571(99)00020-X
  39. [39]. H. Sun, X. Young, Y. Ye, Advances in saponin-based adjuvants, Vaccine 27 (2009) 1787-1796. Doi: 10.1016/J.VACCIN.2009. 01. 091
  40. [40]. A.B.D. Nandiyanto, R. Oktiani, R. Ragadhita, How to read and interpret FTIR spectroscopy of organic material, Indonesian Journal of Science & Technology 4 (2019) 15806. Doi: 10.17509/IJOST.V4I1.15806
  41. [41]. S. Sharaf, A. Higazy, A. Hebeish, Propolis induced antibacterial activity and other technical properties of cotton textiles, International Journal of Biological Macromolecules 59 (2013) 408-416. Doi: 10.1016/j.ijbiomac.2013.04.030
  42. [42]. K. Kavipriya, M. Chandran, FTIR and GCMS analysis of bioactive, phytocompounds in methanolic leaf extract of Cassia alata, Biomedical and Pharmacology Journal 11 (2018) 18736. Doi: 10.13005/bpj/1355
  43. [43]. P. Priyadharsini, D. Dhanasekaran, B. Kanimozhi, Isolation, structural identification, and herbicidal activity of N-phenylpropanamide from Streptomyces spp. KA1-3. Archive of Phytopathology and Plant Protection 46 (2013) 364-373. Doi: 10.1080/03235408.2012.758418
  44. [44]. M. Kachel, A. Matwijczuk, A. Przywara, A. Kraszkiewicz, M. Koszel, Profile of fatty acids and spectroscopic characteristics of selected vegetable oils extracted by cold maceration, Agricultural Engineering 22 (2018) 61-71. Doi: 10.1515/agriceng-2018-0006
  45. [45]. M. Matwijczuk, G. Zajac, R. Kowalski, M. Kachel-Jekubowska, M. Gagos, Spectroscopic studies of the quality of fatty acid methyl esters (FAME) derived from waste cooking oil, Polish Journal of Environmental Studies 26 (2017) 2643-2650. Doi: 10.15244/PJOES/70431
  46. [46]. A.J. Silver, S. De Souza, Membranes from latex with propolis for biomedical applications, Materials Letters 116 (2014) 235-238. Doi: 10.1016/J.MATLET.2013.11.045
  47. [47]. A. Javaid, H. Qudsia, I.H. Khan, A. Anwar, M.F. Ferdosi, Antifungal activity of Senna occidentalis root extract against Macrophomia phaseolina and its GC-MS analysis, Pakistan Journal of Weed Science Research 28 (2022) 115-122. Doi: 10.28941/PJWSR.V28I1.1033
  48. [48]. A.V. Audipudi, R. Badri, C.V.S. Bhaskar, GC-MS and in silico molecular docking analysis of secondary metabolites present in leaf extract of Cassia occidentalis Linn., in: S.M. Malik, C. Long, K. Tamasiri, H. Lutken (Eds.) Medicinal Plants: Biodiversity, Sustainable Utilization and Conservation, pp. 501-508, Springer Nature Singapore Pte Ltd; 2020. Doi: 10.1007/978-981-15-1636-8_27
  49. [49]. A.C. de Andrade Tomaz, G.E. C. de Mirande, M.F.V. de Souza, E.V.L. da Cunha, Analysis and characterization of methyl esters of fatty acids of some Gracilaria spp., Biochemical Systematics and Ecology 44 (2012) 303-306. Doi: 10.1016/j.bse.2012.02.006
  50. [50]. M. Chukwuonye Ojinnaka, K.I. Nwachukwu, M.N. Ezediokpu, The chemical constituents and bioactivity of seed (fruit) extracts of Buchholzia coriacea Engler (Capparaceae), Journal of Applied Sciences and Environmental Management 19 (2015) 795-801. Doi: 10.4314/jasem.v19i4.29
  51. [51]. G.A. Juliana Silva, A. Alexander Silva, D. Isabel Coutinho, P.O. Claudia, J.C. Alberto, G. V. Maria Silva, Chemical profile, and cytotoxic activity of leaf extracts from Senna spp. from Northeast of Brazil, Journal of the Brazilian Chemical Society 27 (2016) 1872-1880. Doi: 10.5935/0103-5053.20160073
  52. [52]. M. Cholewski, M. Tomczykowa, M. Tomczy, A comprehensive review of chemistry, sources, and bioavailability of omega-3 fatty acids, Nutrients 10 (2018) 1662. Doi: 10.3390/NU10111662
  53. [53]. E. Fattore, R. Farnelli, Palm oil and palmitic acid: A review on cardiovascular effects and carcinogenicity, International Journal of Food Science Nutrition 64 (2013) 648-659. Doi: 10.3109/09637486.2013.768213
  54. [54]. G.O. Igile, U.L. Okoli, I.A. Iwara, M.U. Etang, Volatile constituents of two fractions of leaves of Ficus vogelli, Natural Product Chemistry & Research 6 (2018) 344. Doi: 10.4172/2329-6836.1000344
  55. [55]. M.A. Andrade, R.R. Santos, A. Sanches-Silva, Essential oils from plants industrial application and biotechnological productions, In: S. Malik (Eds.), Exploring Plant Cells for The Production of Compounds of Interest pp. 145-170, Springer (2021). Doi: 10.1007/978-3-030-58271-5_6
  56. [56]. B. Sharmeen Jugreet, S. Suroowan, R.R. Kannan Rengasamy, M.F. Mahomoodally, Chemistry, bioactivities, mode of action and industrial applications of essential oils, Trends in Food Science & Technology 101 (2020) 89-105. Doi: 10.1016/j.tifs.2020.04.025
  57. [57]. S. Pattanaik, S. Chandra Si, A. Pal, J. Panda, S.S. Nayak, Wound healing activity of methanolic extract of the leaves of Crataeva magna and Euphorbia nerifolia in rats, Journal of Applied Pharmaceutical Science 4 (2014) 046-049. Doi: 10.7324/japs.2014.40310
  58. [58]. J.C. Chukwujekwu, P.H. Coombes, D.A. Mulholland, J. Van Staden, Emodin, an antibacterial anthraquinone from the roots of Cassia occidentalis, South African Journal of Botany 72 (2006) 295-297. Doi: 10.1016/J.sajb.2005.08.003
  59. [59]. N. Rajalingam, J. Jung, S. Seo, H. Jin, B. Kim, M. Jeong, D. Kim, J. Ryu, K. Ryu, K. Kyo Oh, Prevalence, distribution, enterotoxin profiles, antimicrobial resistance, and genetic diversity of Bacillus cereus group isolates from lettuce farms in Korea, Frontiers in Microbiology 13 (2022) 906040. Doi: 10.3389/fmicb.2022.906040
  60. [60]. F.O. Taiwo, D.A. Akinkpelu, O.A. Aiyegoro, S. Olabiyi, M.F. Adegboye, The biocidal and phytochemical properties of the leaf extract of Cassia occidentalis Linn., African Journal of Microbiology Research 7 (2013) 3435-3441. Doi: 10.5897/AJMR 2013.5673
DOI: https://doi.org/10.2478/auoc-2023-0009 | Journal eISSN: 2286-038X | Journal ISSN: 1583-2430
Language: English
Page range: 63 - 71
Submitted on: May 5, 2022
Accepted on: Jul 12, 2023
Published on: Sep 13, 2023
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2023 Ngozi Francesca Amako, Mary-Ann Nkoli Mgbemena, Sunday Peter Odo, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.